[1] 徐 超, 曹欣旺, 王晨阳, 等. 热处理工艺对高速列车用51CrV4钢轴箱弹簧力学性能及服役性能的影响[J]. 金属热处理, 2024, 49(8): 53-59. Xu Chao, Cao Xinwang, Wang Chenyang, et al. Influence of heat treatment process on mechanical properties and service performance of 51CrV4 steel jouranl box spring for high-speed trains[J]. Heat Treatment of Metals, 2024, 49(8): 53-59. [2] 卢新春, 罗贻正, 王艳林. 含硼弹簧钢60Si2Mn的淬透性及其CCT曲线[J]. 金属热处理, 2022, 47(12): 132-137. Lu Xinchun, Luo Yizheng, Wang Yanlin. Hardenability of B containing spring steel 60Si2Mn and its CCT curves[J]. Heat Treatment of Metals, 2022, 47(12): 132-137. [3] Wang Yanlin, Fu Lihua, Zhou Meng, et al. Thermodynamics analysis of multiple microelements’ coupling behavior in high fatigue resistance 50CrVA spring steel with nanoparticles[J]. Materials, 2019, 12(18): 2952. [4] 惠卫军, 董 瀚, 翁宇庆. 汽车螺旋悬挂弹簧用钢的发展动向[J]. 钢铁研究学报, 2001, 13(2): 67-72. Hui Weijun, Dong Han, Weng Yuqing. Development trend of high strength steels used for automotive suspension coil spring[J]. Journal of Iron and Steel Research, 2001, 13(2): 67-72. [5] 罗迪强, 谢飞鸣, 汪志刚, 等. 高品质弹簧钢51CrV4的高温塑性研究[J]. 材料导报, 2016, 30(12): 90-94. Luo Diqiang, Xie Feiming, Wang Zhigang, et al. Hot ductility behavior of high-quality 51CrV4 spring steels[J]. Materials Reports, 2016, 30(12): 90-94. [6] 梁云昊, 宋凯强, 王艳林, 等. 高强韧耐蚀抗氢脆弹簧钢研究进展[J]. 表面技术, 2024, 53(24): 1-18. Liang Yunhao, Song Kaiqiang, Wang Yanlin, et al. Research progress of high-strength and toughness spring steel with corrosion resistance and hydrogen embrittlement resistance[J]. Surface Technology, 2024, 53(24): 1-18. [7] 徐德祥, 尹钟大. 高强度弹簧钢的发展现状和趋势[J]. 钢铁, 2004, 39(1): 67-71. Xu Dexiang, Yin Zhongda. The tendency to high strength of spring steels and the effect of alloying elements[J]. Iron and Steel, 2004, 39(1): 67-71. [8] 戴良刚, 沈兆侠, 张显亮, 等. 60Si2CrVA圆柱弹簧断裂失效的原因分析[J]. 扬州大学学报(自然科学版), 2010, 13(1): 38-41. Dai Lianggang, Shen Zhaoxia, Zhang Xianliang, et al. Cause analysis on the fracture failure of the cylindrical spring made of 60Si2CrVA[J]. Journal of Yangzhou University (Natural Science Edition), 2010, 13(1): 38-41. [9] 满廷慧, 江 畅, 刘 坤, 等. 大截面高强度中锰锻钢淬透性研究[J]. 钢铁研究学报, 2022, 34(8): 834-839. Man Tinghui, Jiang Chang, Liu Kun, et al. Study on hardenability of large cross-sectional high strength medium-Mn forged steels[J]. Journal of Iron and Steel Research, 2022, 34(8): 834-839. [10] 王艳林, 张灵通, 张博炜, 等. 高强韧弹簧钢中Ti-V-B-N-C系微量元素耦合热力学分析及其对第二相析出行为的影响[J]. 材料导报, 2023, 37(20): 162-168. Wang Yanlin, Zhang Lingtong, Zhang Bowei, et al. Thermodynamic analysis for the multiple microelements coupling and its effects on the secondary phase precipitation behavior in high strength and toughness spring steels[J]. Materials Reports, 2023, 37(20): 162-168. [11] 陈继林, 郭明仪, 刘振民, 等. 氮含量对含硼钢淬透性的影响[J]. 轧钢, 2015, 32(4): 94-96. Chen Jilin, Guo Mingyi, Liu Zhenmin, et al. Effect of nitrogen content on the hardenability of boron steel[J]. Steel Rolling, 2015, 32(4): 94-96. [12] 潘 涛, 王小勇, 苏 航, 等. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响[J]. 金属学报, 2014, 50(4): 47-54. Pan Tao, Wang Xiaoyong, Su Hang, et al. Effect of alloying element Al on hardenability and mechanical properties of micro-B treated ultra-heavy plate steels[J]. Acta Metallurgica Sinica, 2014, 50(4): 47-54. [13] 王陆军, 查建军, 朱建新, 等. 淬透性在热处理实践中的应用[J]. 热处理技术与装备, 2022, 43(2): 54-59. Wang Lujun, Zha Jianjun, Zhu Jianxin, et al. Application of hardenability in heat treatment practice[J]. Heat Treatment Technology and Equipment, 2022, 43(2): 54-59. [14] 陈 金, 吴 润, 徐 凯, 等. 锰在高硼钢凝固中的合金化作用[J]. 热加工工艺, 2020, 49(8): 26-29. Chen Jin, Wu Run, Xu Kai, et al. Alloying effect of manganese in solidification of high boron steel[J]. Hot Working Technology, 2020, 49(8): 26-29. [15] 李 颖, 杜忠泽, 符寒光, 等. Fe-Cr-B合金的组织性能研究与应用发展前景[J]. 热加工工艺, 2012, 41(22): 76-79. Li Ying, Du Zhongze, Fu Hanguang, et al. Research and application prospect on microstructure and properties of Fe-Cr-B alloy[J]. Hot Working Technology, 2012, 41(22): 76-79. [16] 黄 瑞, 赵四新, 黄宗泽. 硼对铬锰钼系含硼调质钢淬透性的影响[J]. 钢铁研究学报, 2021, 33(5): 437-442. Huang Rui, Zhao Sixin, Huang Zongze. Effects of boron on hardenability for Cr-Mn-Mo quenched-tempered steel containing boron[J]. Journal of Iron and Steel Research, 2021, 33(5): 437-442. [17] Ruan Shipeng, Zhao Aimin, Wang Lijun. Effect of boron on microstructure and properties of ultra-low carbon steel[J]. IOP Conference Series: Materials Science and Engineering, 2020, 774: 012023-01203. [18] 张 涛, 侯华兴, 衣海龙, 等. 硼含量及热处理对低碳贝氏体钢组织性能的影响[J]. 金属热处理, 2011, 36(11): 76-80. Zhang Tao, Hou Huaxing, Yi Hailong, et al. Effect of boron content and heat treatment process on microstructure and mechanical properties of low bainitic steel plates[J]. Heat Treatment of Metals, 2011, 36(11): 76-80. [19] Jun H J, Kang J S, Seo D H, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels[J]. Materials Science and Engineering A, 2006, 422(1/2): 157-162. [20] Lopez Chipres E, Mejia I, Maldonado C, et al. Hot ductility behavior of boron micro alloyed steels[J]. Materials Science and Engineering A, 2007, 460-461: 464-470. [21] 张增志. 耐磨高锰钢[M]. 北京: 冶金工业出版社, 2002. [22] 童志博, 彭其春, 沈冬冬, 等. 硼在钢中的作用及应用[J]. 中国冶金, 2013, 23(5): 12-16. Tong Zhibo, Peng Qichun, Shen Dongdong, et al. Function and application of boron in steel[J]. China Metallurgy, 2013, 23(5): 12-16. |