[1] 房洪杰, 刘 慧, 孙 杰, 等. 5×××系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 207-216. Fang Hongjie, Liu Hui, Sun Jie, et al. Research status and development trend of 5××× series aluminum alloys[J]. Materials Reports, 2023, 37(21): 207-216. [2] 侯胜利. 时效强化型Al-Mg-Zn合金析出行为研究及抗晶间腐蚀性能优化[D]. 北京: 北京科技大学, 2020. [3] 孙德勤, 陈慧君, 文青草, 等. 耐热铝合金的发展与应用[J]. 有色金属科学与工程, 2018, 9(3): 65-69. Sun Deqin, Chen Huijun, Wen Qingcao, et al. Development and application of heat-resistant Al alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 65-69. [4] 武 磊, 何 兵, 覃文东, 等. 异速轧制和常规轧制对7075铝板力学性能的影响[J]. 有色金属科学与工程, 2024, 15(3): 400-406. Wu Lei, He Bing, Qin Wendong, et al. Effect of asymmetrical and symmetrical rolling on mechanical properties of 7075 aluminum plates[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 400-406. [5] 陈久安. 热处理对Er 5052铝合金组织与性能的影响[D]. 重庆: 西南大学, 2016. [6] 郭 成, 李宝绵, 张海涛, 等. 高强耐蚀5×××系铝合金的研究现状及发展趋势[J]. 稀有金属, 2018, 42(8): 878-884. Guo Cheng, Li Baomian, Zhang Haitao, et al. Research status and development trend of high-strength and corrosion-resistant 5××× series aluminum alloy[J]. Chinese Journal of Rare Metals, 2018, 42(8): 878-884. [7] 王昕宇, 徐 春, 黎 雨, 等. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103. Wang Xinyu, Xu Chun, Li Yu, et al. Deformation behavior, microstructure and texture evolution of 5052 aluminum alloy under electropulsing tensile[J]. Materials Reports, 2020, 34(24): 24097-24103. [8] 孙进宝, 王少华, 刘 惠, 等. 稳定化退火对新型5×××铝合金组织与性能的影响[J]. 金属热处理, 2024, 49(4): 175-182. Sun Jinbao, Wang Shaohua, Liu Hui, et al. Effect of stabilizing annealing on microstructure and properties of a new 5××× aluminum alloy[J]. Heat Treatment of Metals, 2024, 49(4): 175-182. [9] 朱庆丰, 黄建航, 高 扬, 等. 稳定化退火温度对5059铝合金冷轧板材组织及性能的影响[J]. 东北大学学报(自然科学版), 2024, 45(3): 323-330. Zhun Qingfeng, Huang Jianhang, Gao Yang, et al. Effects of stabilizing annealing temperature on microstructure and properties of cold-rolled 5059 aluminum alloy plate[J]. Journal of Northeastern University (Natural Science), 2024, 45(3): 323-330. [10] 朱庆丰, 韩旭琛, 黄建航, 等. 稳定化退火制度对5059铝合金板材耐腐蚀性能的影响[J]. 轻合金加工技术, 2023, 51(6): 15-21. Zhun Qingfeng, Han Xuchen, Huang Jianhang, et al. Effect of stabilization annealing on the corrosion resistance of 5059 aluminum alloy plate[J]. Light Alloy Fabrication Technology, 2023, 51(6): 15-21. [11] Huskins E L, Cao B. Ramesh K T. Strengthening mechanisms in an Al-Mg alloy[J]. Materials Science and Engineering A, 2010, 527(6): 1292-1298. [12] 葛丽丽, 程仁策, 吕正风, 等. Mn含量对Al-Mg合金板材组织与性能的影响[J]. 金属热处理, 2017, 42(5): 14-17. Ge Lili, Cheng Rence, Lü Zhengfeng, et al. Effects of Mn content on microstructure and mechanical properties of Al-Mg alloy plate[J]. Heat Treatment of Metals, 2017, 42(5): 14-17. [13] 余 聪, 陈乐平, 周 全. 稀土元素对铝合金组织与性能影响的研究进展[J]. 特种铸造及有色合金, 2021, 41(2): 241-246. Yu Cong, Chen Leping, Zhou Quan. Research progress in effects of rare earth elements on microstructure and properties of aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2021, 41(2): 241-246. [14] 王英君, 张克伟, 路丽英, 等. 微量稀土元素对5A06铝合金组织和性能的影响[J]. 轻合金加工技术, 2014, 42(4): 65-68. Wang Yingjun, Zhang Kewei, Lu Liying, et al. Effect of trace rare earth elements on microstructure and property of 5A06 aluminum alloy[J]. Light Alloy Fabrication Technology, 2014, 42(4): 65-68. [15] 雷 远. Zr、Er微合金化对6061铝合金组织与性能的影响[D]. 合肥: 合肥工业大学, 2018. [16] 侯胜利. 时效强化型Al-Mg-Zn合金析出行为研究及抗晶间腐蚀性能优化[D]. 北京: 北京科技大学, 2020. [17] 丁清伟. 时效强化型Al-Mg-Zn合金组织性能研究及工艺优化[D]. 北京: 北京科技大学, 2020. [18] 刘楚明. 铝合金相图集[M]. 长沙: 中南大学出版社, 2014: 887-889. [19] 黄高仁, 孙乙萌, 张 利, 等. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114. Huang Gaoren, Sun Yimeng, Zhang Li, et al. Effect of Mg content on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu-Zr alloys[J]. Journal of Materials Engineering, 2018, 46(9): 109-114. [20] 廖元飞, 陈江华, 刘春辉, 等. Al-Mg-Si-Cu合金中晶界和晶内析出相粗化规律的研究[J]. 电子显微学报, 2012, 31(2): 116-123. Liao Yuanfei, Chen Jianghua, Liu Chunhui, et al. An electron microscopy study of precipitate coarsening in Al-Mg-Si-Cu alloys[J]. Journal of Chinese Electron Microscopy Society, 2012, 31(2): 116-123. [21] Kannan K, Vetrano J S, Hamilton C H. Effects of alloy modification and thermomechanical processing on recrystallization of Al-Mg-Mn alloys[J]. Metallurgical and Materials Transactions A, 1996, 27(10): 2947-2957. [22] Goswami R, Spanos G, Pao P S, et al. Precipitation behavior of the β phase in Al-5083[J]. Materials Science and Engineering A, 2010, 527(4/5): 1089-1095. [23] 余爱武, 顾 丹, 宿国友, 等. Ti, Zr复合微合金化对铝合金再结晶的影响[J]. 稀有金属, 2016, 40(12): 1200-1206. Yu Aiwu, Gu Dan, Su Guoyou, et al. Recrystallization of aluminum alloy with Ti, Zr composite microalloying[J]. Chinese Journal of Rare Metals, 2016, 40(12): 1200-1206. [24] 高文斌. 船舰用铝镁合金AA5083-H128的敏化析出行为和环境敏感断裂[D]. 天津: 天津大学, 2018. [25] Oguocha I N A, Adigun O J, Yannacopoulos S. Effect of sensitization heat treatment on properties of Al-Mg alloy AA5083-H116[J]. Journal of Materials Science, 2008, 43(12): 4208-4214. [26] Yassar R S, Field D P, Weiland H. Transmission electron microscopy and differential scanning calorimetry studies on the precipitation sequence in an Al-Mg-Si alloy: AA6022[J]. Journal of Materials Research, 2005, 20(10): 2705-2711. [27] Meng C Y, Zhang D, Liu P P, et al. Microstructure characterization in a sensitized Al-Mg-Mn-Zn alloy[J]. Rare Metals, 2018, 37(2): 129-135. |