[1] 王振东, 牟俊茂. 钢材感应加热快速热处理[M]. 北京: 化学工业出版社, 2012. [2] 郭海峰, 张志克. 建筑新型钢铁材料探析[J]. 山东冶金, 2021, 43(1): 79-80. Guo Haifeng, Zhang Zhike. Analysis of new building steel materials[J]. Shandong Metallurgy, 2021, 43(1): 79-80. [3] 朱宜进, 高 雅, 宋庆吉, 等. 浅述桥梁钢的发展现状和趋势[J]. 宽厚板, 2016, 22(3): 43-45. Zhu Yijin, Gao Ya, Song Qingji, et al. A brief description of current status and development trend for bridge structural steel plate[J]. Wide and Heavy Plate, 2016, 22(3): 43-45. [4] 周 廉, 丁文江, 薛群基, 等. 中国海洋工程材料发展战略咨询报告[M]. 北京: 化学工业出版社, 2014. [5] 刘正东. 中国能源工业发展对钢铁材料技术的挑战[J]. 特钢技术, 2010, 16(1): 1-6. Liu Zhengdong. Challenges to the critical steel technology in the course of the development of Chinese energy industries[J]. Special Steel Technology, 2010, 16(1): 1-6. [6] 翁宇庆, 杨才福, 尚成嘉. 低合金钢在中国的发展现状与趋势[J]. 钢铁, 2011, 46(9): 1-10. Weng Yuqing, Yang Caifu, Shang Chengjia. State-of-the-art and development trends of HSLA steels in China[J]. Iron & Steel, 2011, 46(9): 1-10. [7] 金学军, 龚 煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428. Jin Xuejun, Gong Yu, Han Xianhong, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 411-428. [8] Nagao A, Hayashi K, Oi K, et al. Refinement of cementite in high strength steel plates by rapid heating and tempering[J]. Materials Science Forum, 2007, 539: 4720-4725. [9] Nobuo S, Shinji M, Shigeru E. Recent development in microstructural control technologies through the thermo-mechanical control process (TMCP) with JFE Steel's high-performance plates[J]. JFE Technical Report, 2008, 11: 1-6. [10] Satoshi I. Development of thermo-mechanical control process (TMCP) and high performance steels in JFE steel[J]. JFE Technical Reports, 2021, 26: 86-94. [11] 王晓晶. 高性能热轧薄钢板连续热处理线工程实践[J]. 轧钢, 2015, 32(5): 48-50. Wang Xiaojing. The engineering practice of continuous heat treatment line for hot rolled high performace sheet[J]. Steel Rolling, 2015, 32(5): 48-50. [12] 衣江华. 高强钢Q960E感应热处理生产线的工艺实践[J]. 金属加工(热加工), 2019(7): 70-72. Yi Jianghua. Process practice of induction heat treatment production line of high strength steel Q960E[J]. MW Metal Forming, 2019(7): 70-72. [13] 衣江华. 1500 MPa超高强度钢热处理工艺研究[J]. 金属加工(热加工), 2020(9): 90-93. Yi Jianghua. Research on heat treatment technology of 1500 MPa ultrahigh strength steel[J]. MW Metal Forming, 2020(9): 90-93. [14] Yuan Q, Ren J, Mo J, et al. Effects of rapid heating on the phase transformation and grain refinement of a low-carbon micro alloyed steel[J]. Journal of Materials Research and Technology, 2023, 23: 3756-3771. [15] Wen S, Liu Y, Chen Z, et al. Mechanical and microstructure properties of ultra-high strength boron steel using rapid resistance heating without soaking[J]. Journal of Materials Science, 2023, 58(16): 7161-7181. [16] Reis A C D C, Bracke L, Petrov R, et al. Grain refinement and texture change in interstitial free steels after severe rolling and ultra-short annealing[J]. ISIJ International, 2003, 43(8): 1260-1267. [17] Nakada N, Arakawa Y, Park K S, et al. Dual phase structure formed by partial reversion of cold-deformed martensite[J]. Materials Science and Engineering A, 2012, 553: 128-133. [18] Xu D, Li J, Meng Q, et al. Effect of heating rate on microstructure and mechanical properties of TRIP-aided multiphase steel[J]. Journal of Alloys and Compounds, 2014, 614: 94-101. [19] Cerda F C, Goulas C, Sabirov I, et al. Microstructure, texture and mechanical properties in a low carbon steel after ultrafast heating[J]. Materials Science and Engineering A, 2016, 672: 108-120. [20] 韩建胜, 温鹏宇, 罗海文. 超快速加热对冷轧IF钢组织和力学性能的影响[J]. 中国冶金, 2020, 30(5): 42-46, 69. Han Jiansheng, Wen Pengyu, Luo Haiwen. Effect of ultra-fast heating on microstructural evolution and mechanical properties of IF steel[J]. China Metallurgy, 2020, 30(5): 42-46, 69. [21] 温鹏宇, 韩健胜, 罗海文. 闪速加热工艺在先进高强钢中的应用[J]. 钢铁研究学报, 2020, 32(12): 1050-1058. Wen Pengyu, Han Jiansheng, Luo Haiwen. Application of flash processing in advanced high strength steels[J]. Journal of Iron and Steel Research, 2020, 32(12): 1050-1058. [22] 罗海文, 温鹏宇. 超快速加热工艺生产超高强度马氏体冷轧钢板的方法: ZL 201711019854.4[P]. 2018-09-14. [23] Muljono D, Ferry M, Dunne D P. Influence of heating rate on anisothermal recrystallization in low and ultra-low carbon steels[J]. Materials Science and Engineering A, 2001, 303(1-2): 90-99. [24] 张占领, 柳永宁, 朱杰武, 等. 超细晶1.73C超高碳钢的组织和性能[J]. 材料研究学报, 2006, 20(4): 407-411. Zhang Zhanling, Liu Yongning, Zhu Jiewu, et al. Microstructure and properties of ultrafine grained ultrahigh carbon (1.73 pct C) steel[J]. Chinese Journal of Materials Research, 2006, 20(4): 407-411. [25] Liu G, Li J, Zhang S, et al. Dilatometric study on the recrystallization and austenization behavior of cold-rolled steel with different heating rates[J]. Journal of Alloys and Compounds, 2016, 666: 309-316. [26] De Knijf D, Puype A, FöJer C, et al. The influence of ultra-fast annealing prior to quenching and partitioning on the microstructure and mechanical properties[J]. Materials Science and Engineering A, 2015, 627: 182-190. [27] Liu G, Zhang S G, Meng Q G, et al. Effect of heating rate on microstructural evolution and mechanical properties of cold-rolled quenching and partitioning steel[J]. Ironmaking & Steelmaking, 2016, 44(3): 202-209. [28] Hernandez-Durab Ei, Bliznuk V, Ros-Yanez T, et al. Improvement of the strength-ductility balance in ultra-fast heated steels by combining high-temperature annealing and quenching and partitioning process[J]. Materials Science and Engineering A, 2021, 827: 142045. [29] Liu G, Zhang S, Li J, et al. Fast-heating for intercritical annealing of cold-rolled quenching and partitioning steel[J]. Materials Science and Engineering A, 2016, 669: 387-395. [30] Banis A, Duran E H, Bliznuk V, et al. The effect of ultra-fast heating on the microstructure, grain size and texture evolution of a commercial low-C, medium-Mn DP steel[J]. Metals-Open Access Metallurgy Journal, 2019, 9(8): 877. [31] Furuhara T, Kobayashi K, Maki T. Control of cementite precipitation in lath martensite by rapid heating and tempering[J]. Transactions of the Iron & Steel Institute of Japan, 2007, 44(11): 1937-1944. [32] Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Materialia, 2017, 126: 63-67. [33] Jang J M, Kim S J, Kang N H, et al. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel[J]. Metals & Materials International, 2009, 15: 909-916. [34] Lee S J, Lee S, Cooman B. Mn partitioning during the intercritical annealing of ultrafine-grained 6%Mn transformation-induced plasticity steel[J]. Scripta Materialia, 2011, 64(7): 649-652. [35] Ding R, Zhang C, Wang Y, et al. Mechanistic role of Mn heterogeneity in austenite decomposition and stabilization in a commercial quenching and partitioning steel[J]. Acta Materialia, 2023, 250: 118869. [36] Yang Y, Neding B, Li R, et al. Revealing the interdependence of loading partitioning, dislocation density evolution and mechanical behavior of medium Mn steels[J]. Materials Science and Engineering A, 2023, 880: 145330. [37] Lu Y, Liu L, Jian J, et al. Towards strength-ductility synergy in a medium Mn steel through developing heterogeneous dual-morphology microstructure[J]. Materials Science and Engineering A, 2024, 915: 147229. [38] Tran M T, Nguyen X M, Kim H, et al. Correlation between individual phase constitutive properties and plastic heterogeneities in advanced-high strength dual-phase steels[J]. Materials Characterization, 2024, 217: 114356. [39] Liu S, Xiong Z, Guo H, et al. The significance of multi-step partitioning: Processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels[J]. Acta Materialia, 2017, 124: 159-172. [40] Kim J H, Gu G, Koo M, et al. Enhanced ductility of as-quenched martensite by highly stable nano-sized austenite[J]. Scripta Materialia, 2021, 201: 113955. [41] Liu S, Hu B, Li W, et al. Refined heterogeneous phase unit enhances ductility in quenched ultra-high strength steels[J]. Scripta Materialia, 2021, 194(5): 113636. [42] Wan X, Liu G, Yang Z, et al. Flash annealing yields a strong and ductile medium Mn steel with heterogeneous microstructure[J]. Scripta Materialia, 2021, 198: 113819. [43] Ding R, Yao Y, Sun B, et al. Chemical boundary engineering: A new route toward lean, ultra strong yet ductile steels[J]. Science Advances, 2020, 6(13): eaay1430. [44] Kim J H, Kwon M H, Gu G, et al. Quenching and partitioning (Q&P) processed medium Mn steel starting from heterogeneous microstructure[J]. Materialia, 2020, 12: 100757. [45] Kim J H, Gu G, Kwon M H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite[J]. Acta Materialia, 2022, 223: 117506. [46] Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146: 60-63. [47] Zhang C, Xiong Z P, Yang D Z, et al. Heterogenous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement[J]. Acta Materialia, 2022, 235: 118060. [48] 张 超, 熊志平, 杨德振, 等. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(1): 69-79. Zhang Chao, Xiong Zhiping, Yang Dezhen, et al. Effect of Mn heterogeneous distribution on microstructures and mechanical properties of quenching and partitioning steels[J]. Acta Metallurgica Sinica, 2024, 60(1): 69-79. [49] Liu G, Dai Z B, Yang Z G, et al. Kinetic transitions and Mn partitioning during austenite growth from a mixture of partitioned cementite and ferrite: Role of heating rate[J]. Journal of Materials Science & Technology, 2020(14): 70-80. [50] Liu G, Li T, Yang Z G, et al. On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching & partitioning steels[J]. Acta Materialia, 2020, 201: 266-277. |