[1] Vatulin A V, Morozov A V, Suprun V B, et al. Radiation resistance of high-density uranium-molybdenum dispersion fuel for nuclear research reactors[J]. Atomic Energy, 2006, 100(1): 37-46. [2] Kapoor R, Behera A N, Chakravartty J K, et al. Hot deformation of uranium in the α, β, and γ phases[J]. Metallurgical and Materials Transactions A, 2015, 46(1): 251-259. [3] McCabe R J, Capolungo L, Marshall P E, et al. Deformation of wrought uranium: Experiments and modeling[J]. Acta Materialia, 2010, 58(16): 5447-5459. [4] Cahn R W, Haasen P, Kramer E J. Materials Science and Technology: A Comprehensive Treatment[M]. Weinheim: Wiley-VCH, 1993. [5] 刘泾源, 苏 斌. 铀材料制备与铀部件成形技术发展综述[J]. 稀有金属材料与工程, 2021, 50(7): 2652-2662. [6] Li F F, Zhao Y, Chen X, et al. Microstructure changes and mechanical properties of U-2Nb alloy induced by shot peening treatment[J]. Journal of Alloys and Compounds, 2022, 896: 162977. [7] Ren Z, Ma R, Hu G, et al. Grain refinement and mechanical response of U-5.5wt%Nb alloy produced by cold rolling and heat treatment[J]. Journal of Nuclear Materials, 2017, 494: 72-78. [8] Ren Z, Hu G, Ma R, et al. Recrystallization and grain growth of U-5.5wt%Nb alloy[J]. Journal of Nuclear Materials, 2017, 494: 284-293. [9] Garlea E, Bridges R L, Garlea V O, et al. Characterization of a grain size refinement process in cast uranium[J]. Materials Science and Engineering A, 2013, 559: 210-216. [10] Frazier W E, Li L, Choi K S, et al. Microstructure-process relationships in monolithic U-10Mo fuel foil single-pass rolling: A parametric simulation study[J]. Journal of Nuclear Materials, 2023, 576: 154271. [11] Shi T, Li Y, Zhao Y, et al. Role of martensitic interface on the discontinuous precipitation of U-Ti alloys at 400 ℃[J]. Journal of Alloys and Compounds, 2023, 934: 167816. [12] Yin J Q, Rui K, Wu M, et al. Morphological survey of U-2Nb alloy under isothermal transformation[J]. Journal of Nuclear Materials, 2020, 540: 152397. [13] Ma R, Liu T, Hu G, et al. Effect of cooling rates on as-cast microstructures of U-5.4Nb alloys[J]. Journal of Nuclear Materials, 2021, 543: 152498. [14] Jana S, Overman N, Varga T, et al. Phase transformation kinetics in rolled U-10 wt.%Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size[J]. Journal of Nuclear Materials, 2017, 496: 215-226. [15] Devaraj A, Kovarik L, Kautz E, et al. Grain boundary engineering to control the discontinuous precipitation in multicomponent U-10Mo alloy[J]. Acta Materialia, 2018, 151: 181-190. [16] Perez E, Yao B, Keiser D D, et al. Microstructural analysis of as-processed U-10wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier[J]. Journal of Nuclear Materials, 2010, 402(1): 8-14. [17] Zou D, He L, Xiao D, et al. Microstructure and mechanical properties of fine grained uranium prepared by ECAP and subsequent intermediate heat treatment[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(10): 2749-2756. [18] Di Lemma F G, Burns J, Madden J W, et al. Texture analyses and microstructural evolution in monolithic U-Mo nuclear fuel[J]. Journal of Nuclear Materials, 2021, 544: 152677. [19] Di Lemma F G, Jue J F, Winston A J, et al. Impacts of annealing treatment on the microstructure of U-Mo monolithic fuel plates[J]. Journal of Nuclear Materials, 2022, 564: 153687. [20] Chen D, Zhang X, Wu H, et al. The influence of impurities on the ductility and toughness of a low-temperature-aged U-Nb alloy[J]. Materials Science and Engineering A, 2019, 739: 1-16. [21] Hofman G L, Walters L C, Bauer T H. Metallic fast reactor fuels[J]. Progress in Nuclear Energy, 1997, 31(1): 83-110. [22] Riyas A, Mohanakrishnan P. Studies on physics parameters of metal (U-Pu-Zr) fuelled FBR cores[J]. Annals of Nuclear Energy, 2008, 35(1): 87-92. [23] Shevchuk Y A, Smirnov E A, Fedorov G B. Diffusion in uranium alloys with zirconium and titanium[J]. Atomic Energy, 1992, 72(1): 25-28. [24] Landa A, Söderlind P, Turchi P E A. Density-functional study of U-Mo and U-Zr alloys[J]. Journal of Nuclear Materials, 2011, 414(2): 132-137. [25] Kim Y S, Hofman G L. Fission product induced swelling of U-Mo alloy fuel[J]. Journal of Nuclear Materials, 2011, 419(1): 291-301. [26] Rest J, Kim Y S, Hofman G L, et al. U-Mo Fuels Handbook[R]. Illinois: Argonne National Laboratory, 2006. [27] Kalashnikov V V, Titova V V, Sergeev G I, et al. Uranium-molybdenum alloys in reactor construction[J]. The Soviet Journal of Atomic Energy, 1959, 5(4): 1315-1325. [28] 中国冶金百科全书总编辑委员会《有色金属冶金》卷编辑委员会. 中国冶金百科全书 有色金属冶金[M]. 北京: 冶金工业出版社, 1999. [29] Tangri K, Chaudhuri D K. Metastable phases in uranium alloys with high solute solubility in the BCC gamma phase. Part I — The system U-Nb[J]. Journal of Nuclear Materials, 1965, 15(4): 278-287. [30] Koike J, Kassner M E, Tate R E, et al. The Nb-U (niobium-uranium) system[J]. Journal of Phase Equilibria, 1998, 19(3): 253-260. [31] Wood D H, Dini J W, Johnson H R. Tensile testing of U/5.3wt%Nb and U/6.8wt%Nb alloys[J]. Journal of Nuclear Materials, 1983, 114(2): 199-207. [32] Chancellor W, Wolfenden A, Ludtka G M. Temperature dependence of young's modulus and shear modulus in uranium-2.4wt% niobium alloy[J]. Journal of Nuclear Materials, 1990, 171(2): 389-394. [33] Massalski T B, Okamoto H, Subramanian P R. Binary Alloy Phase Diagrams[M]. Ohio: ASM International, 1990. [34] Field R D, Thoma D J, Dunn P S, et al. Martensitic structures and deformation twinning in the U-Nb shape-memory alloys[J]. Philosophical Magazine A, 2001, 81(7): 1691-1724. [35] Anagnostidis M, Colombié M, Monti H. Phases metastables dans les alliages uranium-niobium[J]. Journal of Nuclear Materials, 1964, 11(1): 67-76. [36] Eckelmeyer K H, Romig A D, Weirick L J. The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U-6 wt pct Nb[J]. Metallurgical Transactions A, 1984, 15(7): 1319-1330. [37] Park Y, Eriksson N, Keiser D D, et al. Microstructural anomalies in hot-isostatic pressed U-10wt% fuel plates with Zr diffusion barrier[J]. Materials Characterization, 2015, 103: 50-57. [38] Gupta S, Kumar R, Majumdar S, et al. Mechanistic understanding, gamma phase formation and morphological behaviour of the reduction-diffusion processed U-Mo alloy[J]. Journal of Alloys and Compounds, 2019, 791: 109-120. [39] Kumar R, Das S, Roy S B, et al. Effect of Mo addition on the microstructural evolution and γ-U stability in Th-U alloys[J]. Journal of Nuclear Materials, 2020, 539: 152317. [40] Rakesh R, Sinha V P, Manikrishna K V, et al. Eutectoid phase transformation in U-Mo-X alloys[J]. Journal of Nuclear Materials, 2023, 573: 154113. [41] Qin C, Yu Y, Xu Z, et al. Investigations on mechanical, thermodynamic and surface properties of U-Si alloys[J]. Vacuum, 2023, 216: 112417. [42] Kolotova L, Gordeev I. Structure and phase transition features of monoclinic and tetragonal phases in U-Mo alloys[J]. Crystals (Basel), 2020, 10(6): 515. [43] Shen Z, Kong Y, Du Y, et al. Effect of alloying on stability of grain boundary in γ phase of the U-Mo and U-Nb systems[J]. Calphad, 2021, 72: 102241. [44] Pan X L, Song H X, Wang H, et al. Prediction of novel ordered phases in U-X(X=Zr, Sc, Ti, V, Cr, Y, Nb, Mo, Hf, Ta, W) binary alloys under high pressure[J]. Acta Materialia, 2024, 263: 119489. |