[1] 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究[J]. 金属学报, 2018, 54(11): 1637-1652. Zhang Jian, Lou Langhong. Basic research in development and application of cast superalloy[J]. Acta Metallurgica Sinica, 2018, 54(11): 1637-1652. [2] 罗 亮, 肖程波, 陈晶阳, 等. 工业燃气轮机涡轮叶片用铸造高温合金研究及应用进展[J]. 材料工程, 2019, 47(6): 34-41. Luo Liang, Xiao Chengbo, Chen Jingyang, et al. Research and application progress in casting superalloys for industrial gas turbine blades[J]. Joural of Materials Engineering, 2019, 47(6): 34-41. [3] Selvaraj S K, Sundaramali G, Jithin Dev S, et al. Recent advancements in the field of Ni-based superalloys[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-60. [4] 胡壮麒, 刘丽荣, 金 涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31(3): 1-7. Hu Zhuangqi, Liu Lirong, Jin Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3): 1-7. [5] 徐国建, 郭云强, 李春光, 等. 飞机发动机叶片激光熔覆性能[J]. 焊接学报, 2018, 39(8): 72-76. Xu Guojian, Guo Yunqiang, Li Chunguang, et al. Research of laser cladding performance of engine blades[J]. Transactions of the China Welding Institution, 2018, 39(8): 72-76. [6] Gong L, Chen B, Du Z, et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G[J]. Journal of Materials Science & Technology, 2018, 34(3): 541-550. [7] Li X W, Wang L, Liu X G, et al. Effect of aging heat treatment on the microstructure and creep properties of the cast Ni-based superalloy at low temperature[J]. Acta Metallurgica Sinica (English Letters), 2019, 32: 651-658. [8] 谢秋峰, 熊家帅, 代淑荣, 等. 热处理制度对K417G铸造高温合金组织和性能的影响[J]. 铸造, 2024, 73(2): 150-153. Xie Qiufeng, Xiong Jiashuai, Dai Shurong, et al. Influence of heat treatment on microstructure and mechanical properties of K417G superalloy[J]. Foundry, 2024, 73(2): 150-153. [9] 张 健, 王 莉, 王 栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1194. Zhang Jian, Wang Li, Wang Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9): 1077-1194. [10] Long H, Mao S, Liu Y, et al. Microstructural and compositional design of Ni-based single crystalline superalloys―A review[J]. Journal of Alloys and Compounds, 2018, 743: 203-220. [11] Yue X D, Li J R, Wang X G. The microstructure of a single crystal superalloy after different aging heat treatments[J]. Rare Metals, 2018, 37: 210-216. [12] Li F, Bai Y, Meng L, et al. Impact of aging heat treatment on microstructure and mechanical properties of a newly developed GH4096 disk superalloy[J]. Materials Characterization, 2020, 161: 110175. [13] 张雷雷, 陈晶阳, 汤 鑫, 等. K439B铸造高温合金800 ℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264. Zhang Leilei, Chen Jingyang, Tang Xin, et al. Evolution of microstructures and mechanical properties of K439B superalloy during long-term aging at 800 ℃[J]. Acta Metallurgica Sinica, 2023, 59(9): 1253-1264. [14] 陶天成, 臧 凯, 朱治愿. 长期时效对 GH4169合金组织与性能的影响[J]. 金属热处理, 2024, 49(4): 83-88. Tao Tiancheng, Zang Kai, Zhu Zhiyuan. Effect of long-term aging on microstructure and properties of GH4169 alloy[J]. Heat Treatment of Metals, 2024, 49(4): 83-88. [15] 刘建涛, 张国星, 张义文, 等. 时效处理对FGH4096合金的显微组织和拉伸性能的影响[J]. 钢铁研究学报, 2011, 23(2): 474-477. Liu Jiantao, Zhang Guoxin, Zhang Yiwen, et al. Effect of aging treatment on microstructure and tensile property of FGH4096 PM superalloy[J]. Journal of Iron and Steel Research, 2011, 23(2): 474-477. [16] 张楚博, 骞 磊, 张明军, 等. K418B合金900 ℃长期时效显微组织和力学性能演变[J]. 铸造, 2024, 73(3): 357-363. Zhang Chubo, Qian Lei, Zhang Mingjun, et al. Microstructure and mechanical properties evolution of K418B alloy at 900 ℃ for a long-term aging[J]. Foundry, 2024, 73(3): 357-363. [17] 秦学智, 郭建亭, 袁 超, 等. 两种铸造镍基高温合金在长期时效期间的微观组织和力学性能演变[J]. 金属学报, 2010, 46(2): 213-220. Qing Xuezhi, Guo Jianting, Yuan Chao, et al. Evolutions of microstructures and mechanical properties of tow cast Ni-based superalloys during long-term thermal exposure[J]. Acta Metallurgica Sinica, 2010, 46(2): 213-220. [18] Li X W, Wang L, Liu X G, et al. Effect of aging heat treatment on the microstructure and creep properties of the cast Ni-based superalloy at low temperature[J]. Acta Metallurgica Sinica (English Letters), 2019, 32: 651-658. [19] Yu X, Wang S, Zheng D, et al. Effect of heat treatment on rotating bending fatigue properties of K417G nickel-base superalloy[J]. Journal of Alloys and Compounds, 2022, 905: 164209. [20] Gui W, Zhang H, Yang M, et al. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy[J]. Journal of Alloys and Compounds, 2017, 728: 145-151. [21] 杨金侠, 魏 薇, 刘 路, 等. 镍基高温合金中的初生碳化物及其强化作用[J]. 稀有金属材料与工程, 2016, 45(4): 975-978. Yang Jinxia, Wei Wei, Liu Lu, et al. Primary carbide and its strengthening roles in K465 and K492 superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(4): 975-978. [22] Song X, Wang Y, Zhao X, et al. Analysis of carbide transformation in MC-M23C6 and its effect on mechanical properties of Ni-based superalloy[J]. Journal of Alloys and Compounds, 2022, 911: 164959. [23] Qin X, Guo J, Yuan C, et al. Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy[J]. Materials Science and Engineering A, 2008, 485(1/2): 74-79. [24] Li Q, Tian S, Yu H, et al. Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy[J]. Materials Science and Engineering A, 2015, 633: 20-27. [25] 刘丽荣, 金 涛, 赵乃仁, 等. 热处理对一种镍基单晶高温合金微观组织和持久性能的影响[J]. 稀有金属材料与工程, 2006, 35(5): 711-714. Liu Lirong, Jin Tao, Zhao Nairen, et al. Effects of heat treatment on the microstructures and stress rupture properties in a Ni-base single crystal superalloy[J]. Rare Metal Materials and Engineering, 2006, 35(5): 711-714. [26] 欧梅桂, 杨春林, 杨祖建. 热处理工艺对高温合金GH2132力学性能的影响[J]. 金属热处理, 2014, 39(6): 91-93. Ou Meigui, Yang Chunlin, Yang Zujian. Effect of heat treatment on mechanical properties of high temperature alloy GH2132[J]. Heat Treatment of Metals, 2014, 39(6): 91-93. |