[1] 倪继娜, 张 巍, 刘宁馨, 等. “十四五”重载铁路运输需求预测及发展对策探讨[J]. 铁道货运, 2022, 40(1): 7-11, 19. Ni Jina, Zhang Wei, Liu Ningxin, et al. Discussion on railway transport demand forecast and development countermeasures during the 14th Five-Year Plan Period[J]. Railway Freight Transport, 2022, 40(1): 7-11, 19. [2] 张瑞杰, 郑春雷, 张佩君, 等. 定量分析贝氏体钢轨钢中的偏析对疲劳磨损性能的影响[J]. 机械工程学报, 2023, 59(12): 253-263. Zhang Ruijie, Zheng Chunlei, Zhang Peijun, et al. Effect of segregation and contact stress on fatigue wear behavior of bainitic rail steel[J]. Journal of Mechanical Engineering, 2023, 59(12): 253-263. [3] 岑耀东, 郭曜珲, 马 潇, 等. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129. Cen Yaodong, Guo Yaohui, Ma Xiao, et al. Bending fatigue crack propagation behavior of U75V heavy rail steel[J]. Journal of Materials Engineering, 2023, 51(1): 122-129. [4] Liu Jihua, Yu Pijie, Zhou Yujun, et al. New insight on wheel flange/rail gauge lubrication: Effect of lasered microtexture shapes on the wear and fatigue behaviour of wheel/rail steels[J]. Wear, 2022, 498: 204310. [5] 费俊杰. 基于轮轨磨损和滚动接触疲劳耦合关系的U75V钢轨热处理工艺研究[D]. 武汉: 武汉科技大学, 2023. Fei Junjie. Research on the heat treatment process of U75V rail based on the coupling relationship between wheel rail wear and rolling contact fatigue[D]. Wuhan: Wuhan University of Science and Technology, 2023. [6] Cen Y D, Chen L, Chang G, et al. Transformation characteristics and microstructure of rail under low stress during continuous cooling[J]. Journal of Wuhan University of Technology (Materials Science), 2021, 36(2): 269-279. [7] 陈 林, 王慧军, 郭飞翔. 淬火微观组织对重轨钢疲劳裂纹扩展速率的影响[J]. 材料导报, 2017, 31(14): 109-112. Chen Lin, Wang Huijun, Guo Feixiang. Effect of quenching microstructure on fatigue crack growth rate of heavy rail steel[J]. Materials Reports, 2017, 31(14): 109-112. [8] 马 潇, 岑耀东, 陈 林, 等. 淬火工艺对U75V重轨钢组织及力学性能的影响[J]. 金属热处理, 2020, 45(12): 59-62. Ma Xiao, Cen Yaodong, Chen Lin, et al. Effect of quenching process on microstructure and mechanical properties of U75V heavy rail steel[J]. Heat Treatment of Metals, 2020, 45(12): 59-62. [9] 杨 建. 基于冶炼成分调控和超音速风冷强化换热的U75V重轨钢强化研究[D]. 鞍山: 辽宁科技大学, 2021. Yang Jian. Study on the strengthening of U75V heavy rail steel based on the smelting composition control and supersonic air-cooling heat transfer enhancement[D]. Anshan: University of Science and Technology Liaoning, 2021. [10] Gao M X, Yang J, Zhang Y et al. Effect of alloying elements on pearlite critical cooling rate of U75V rail-steel[J]. Transactions of the Indian Institute of Metals, 2023, 76(3): 665-673. [11] 王凯凯, 刘少鹏, 汪永强, 等. 基于表面微织构纹理的U75V钢轨表面增摩特性研究[J]. 摩擦学学报, 2025, 45(1): 101-109. Wang Kaikai, Liu Shaopeng, Wang Yongqiang, et al. Friction-enhancing properties of U75V rail surfaces through surface micro-texturing[J]. Tribology, 2025, 45(1): 101-109. [12] 李 闯. U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43(1): 152-156. Li Chuang. Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43(1): 152-156. [13] 王嘉伟, 薛虎东, 赵桂英, 等. 包钢百米75 kg/m U75V在线热处理钢轨研发[J]. 包钢科技, 2020, 46(2): 59-63. Wang Jiawei, Xue Hudong, Zhao Guiying, et al. Research and development of 100-metre 75 kg/m U75V online heat treated rail of baotou steel[J]. Science and Technology of Baotou Steel, 2020, 46(2): 59-63. [14] 杨德林, 张广顺, 王 茜, 等. 稀土氧化物在激光熔覆镍基合金涂层中的作用与影响[J]. 应用激光, 2023, 43(3): 9-18. Yang Delin, Zhang Guangshun, Wang Qian, et al. Effect and influence of rare earth oxides on laser cladding nickel-based alloy coatings[J]. Applied Laser, 2023, 43(3): 9-18. [15] 刘治邦. 基于液态金属组态结构遗传性的晶体形核孕育时间研究[D]. 长沙: 湖南大学, 2022. Liu Zhibang. Study of crystal nucleation incubation times on the basis of configuration heredity in the isothermal crystallization ofundercooled liquid metal[D]. Changsha: Hunan University, 2022. [16] Minoru H, Tatsumi K, Kazukuni H. Effect of Cr on lamellar spacing and high-temperature stability in eutectoid steels[J]. ISIJ International, 2016, 56(1): 161-167. [17] Dobuzhskaya A B, Galitsyn G A, Yunin G N, et al. Effect of chemical composition, microstructure and mechanical properties on the wear resistance of rail steel[J]. Steel in Translation, 2021, 50(12): 906-910. [18] 高 超, 蒋宏利, 王 旭, 等. 珠光体轨钢磨损及损伤过程中的组织演变行为[J]. 金属热处理, 2024, 49(11): 38-45. Gao Chao, Jiang Hongli, Wang Xu, et al. Behavior of microstructure evolution during wear and damage of pearlitic rail steel[J]. Heat Treatment of Metals, 2024, 49(11): 38-45. [19] 方长洋, 季德惠, 熊光耀, 等. 选择性激光熔化技术制备的Cu-10Sn合金的载流摩擦学性能[J]. 润滑与密封, 2024, 49(2): 50-58. Fang Changyang, Ji Dehui, Xiong Guangyao, et al. Current carrying tribological properties of Cu-10Sn alloy prepared by selective laser melting[J]. Lubrication Engineering, 2024, 49(2): 50-58. [20] 刘吉华. 轮轨材料滚动磨损和接触疲劳损伤行为的试验研究[D]. 成都: 西南交通大学, 2016. Liu Jihua. Experimental research on rolling wear and contact fatigue damage behaviors of wheel/rail materials[D]. Chengdu: Southwest Jiaotong University, 2016. [21] 王楷迪, 岑耀东, 于 波, 等. 珠光体重轨钢组织演变对疲劳裂纹扩展速率的影响[J]. 钢铁, 2025, 60(6): 140-149. Wang Kaidi, Cen Yaodong, Yu Bo, et al. Effect of microstructure evolution of pearlescent heavy rail steel on fatigue crack propagation rate[J]. Iron and Steel, 2025, 60(6): 140-149. |