[1] 张 楠, 吕超然, 徐 乐. 火炮身管用钢现状及发展趋势[J]. 中国冶金, 2019, 29(5): 6-9. Zhang Nan, Lü Chaoran, Xu Le. Current status and development trend of gun barrel steel[J]. China Metallurgy, 2019, 29(5): 6-9. [2] 黄进峰, 张 津, 陈俊宇, 等. 火炮身管失效机理与炮钢的发展[J]. 火炮发射与控制学报, 2023, 44(1): 10-18, 29. Huang Jinfeng, Zhang Jin, Chen Junyu, et al. Failure mechanisms of gun barrels and the development of gun steel[J]. Journal of Gun Launch and Control, 2023, 44(1): 10-18, 29. [3] Troiano E, Parker A P, Underwood J H. Mechanisms and modeling comparing HB7 and A723 high strength pressure vessel steels[J]. Journal of Pressure Vessel Technology, 2004, 126: 473-477. [4] 胡 俊, 吕 彦, 黄建文, 等. 高强韧Cr-Ni-Mo-V钢的冶炼工艺研究[J]. 热加工工艺, 2020, 49(23): 64-66. Hu Jun, Lü Yan, Huang Jianwen, et al. Research on melting process of high strength and high toughness Cr-Ni-Mo-V steel[J]. Hot Working Technology, 2020, 49(23): 64-66. [5] 刘 燕, 王毛球, 刘国权. 回火温度对40CrNi3MoV钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(6): 41-45. Liu Yan, Wang Maoqiu, Liu Guoquan. Effects of tempering temperature on microstructure and mechanical properties of 40CrNi3MoV steel[J]. Heat Treatment of Metals, 2014, 39(6): 41-45. [6] 张伟锋, 何肖飞, 尉文超, 等. Nb微合金化对Cr-Ni-Mo-V系高强钢组织及力学性能的影响[J]. 金属热处理, 2023, 48(1): 29-34. Zhang Weifeng, He Xiaofei, Wei Wenchao, et al. Effect of Nb microalloying on microstructure and mechanical properties of Cr-Ni-Mo-V high-strength steels[J]. Heat Treatment of Metals, 2023, 48(1): 29-34. [7] 杨宏韬, 刘科虹, 贾奇辉, 等. 中碳Cr-Ni-Mo-V耐热高强钢大锻件淬火过程有限元分析[J]. 金属热处理, 2023, 48(5): 138-144. Yang Hongtao, Liu Kehong, Jia Qihui, et al. Finite element analysis of quenching process of large forging of Cr-Ni-Mo-V medium carbon heat-resistant high-strength steel[J]. Heat Treatment of Metals, 2023, 48(5): 138-144. [8] 李文东. 回火过程对M50钢残余奥氏体转变的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014. Li Wendong. Effect of tempering process on residual austenite transformation in M50 steel[D]. Harbin: Harbin Institute of Technology, 2014. [9] Yin W, Briffod F, Yamazaki K, et al. Effect of limited retained austenite on the strength-ductility trade-off in low-alloyed TRIP steel[J]. Materials Science and Engineering A, 2022, 861: 144337. [10] He T, Wang L, Hu F, et al. Stability of retained austenite and work hardening behavior in ultra-fine medium carbon bainitic steel[J]. Journal of Materials Research and Technology, 2023, 22: 2690-2703. [11] 覃耀春, 崔忠圻. 金属学与热处理[M]. 3版. 北京: 机械工业出版社, 2020. [12] Niessen F, Nyyssönen T, Gazder A A, et al. Parent grain reconstruction from partially or fully transformed microstructures in MTEX[J]. Journal of Applied Crystallography, 2022, 55(1): 180-194. [13] Li Y, Li W, Liu W, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Materialia, 2018, 146: 126-141. [14] Zhou C, Ye Q, Zhao T, et al. Strengthening and toughening mechanisms in Ni-alloyed steel: Enhancing the integral stability of retained austenite[J]. Materials Science and Engineering A, 2022, 852: 143703. [15] Jia P, Shi L, Li L, et al. Stability of retained austenite and its effect on tensile properties and hole expansion performance of high-strength steel[J]. Materials Science and Engineering A, 2024, 914: 147112. [16] 薛维维, 孙殿东, 胡俊睿, 等. 不锈钢中亚稳奥氏体-马氏体相变行为的原位分析[J]. 材料工程, 2024, 52(11): 83-90. Xue Weiwei, Sun Diandong, Hu Junrui, et al. In-situ analysis of phase transformation behavior of metastable austenite martensite in stainless stee[J]. Journal of Materials Engineering, 2024, 52(11): 83-90. [17] Xiao B, Yu Y, Hu B, et al. Insights into the role of retained austenite stability in TRIP-aided steel: Ductilizing and toughening[J]. Journal of Materials Research and Technology, 2024, 33: 7698-7708. [18] Xiong Z, Jacques P J, Perlade A, et al. Characterization and control of the compromise between tensile properties and fracture toughness in a quenched and partitioned steel[J]. Metallurgical and Materials Transactions A, 2019, 50(8): 3502-3513. [19] Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Materialia, 2008, 56(15): 3900-3913. |