[1] 王 磊, 卢秉恒. 我国增材制造技术与产业发展研究[J]. 中国工程科学, 2022, 24(4): 202-211. Wang Lei, Lu Bingheng. Development of additive manufacturing technology and industry in China[J]. Strategic Study of CAE, 2022, 24(4): 202-211. [2] 朱学超, 文世峰, 魏青松. AISI420与S136模具钢SLM成形组织及性能[J]. 特种铸造及有色合金, 2019, 39(5): 506-510. Zhu Xuechao, Wen Shifeng, Wei Qingsong. Microstructure and mechanical properties of mould steels AISI 420 and S136 by selective laser melting manufacturing[J]. Special Casting and Nonferrous Alloys, 2019, 39(5): 506-510. [3] 张亮亮, 周 阳, 刘世锋, 等. 模具钢增材制造及其性能的研究进展[J]. 中国冶金, 2022, 32(3): 1-8. Zhang Liangliang, Zhou Yang, Liu Shifeng, et al. Research progress in additive manufacturing and properties of die steel[J]. China Metallurgy, 2022, 32(3): 1-8. [4] 刘庆冬, 张孟超, 刘明洋, 等. 增材制造马氏体时效钢的析出行为与强化机制[J]. 钢铁, 2024, 59(6): 49-59. Liu Qingdong, Zhang Mengchao, Liu Mingyang, et al. Precipitation behavior and strengthening mechanism in an additive manufactured maraging steel[J]. Iron and Steel, 2024, 59(6): 49-59. [5] 刘丰刚, 张文军, 刘奋成, 等. 激光增材制造300M钢的组织及耐腐蚀性能[J]. 特种铸造及有色合金, 2022, 42(9): 1071-1075. Liu Fenggang, Zhang Wenjun, Liu Fencheng, et al. Microstructure and corrosion resistance of laser additive manufactured 300M steel[J]. Special Casting and Nonferrous Alloys, 2022, 42(9): 1071-1075. [6] 付龙虎. 激光热处理对420不锈钢焊缝硬度及抗拉强度的影响[J]. 精密成形工程, 2022, 14(5): 115-120. Fu Longhu. Effects of laser heat treatment on the hardness and tensile strength of 420 stainless steels welds[J]. Precision Forming Engineering, 2022, 14(5): 115-120. [7] Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels[J]. Materials and Design, 2015, 87: 380-385. [8] 卜铁伟. 热处理对马氏体不锈钢显微组织和性能影响[J]. 热加工工艺, 2017, 46(16): 224-227. Bu Tiewei. Effects of heat treatment on microstructure and mechanical properties of martensitic stainless steel[J]. Hot Working Technology, 2017, 46(16): 224-227. [9] 李晓琛, 王世颖, 华天宇, 等. 深冷处理对TC4钛合金退火过程中微观组织和力学性能的影响[J]. 金属热处理, 2022, 47(6): 46-53. Li Xiaochen, Wang Shiying, Hua Tianyu, et al. Effect of deep cryogenic treatment on microstructure and mechanical properties of TC4 titanium alloy during annealing[J]. Heat Treatment of Metals, 2022, 47(6): 46-53. [10] Xu T F, Wang S Y, Li X C, et al. Effects of strain rate on the formation and the tensile behaviors of multimodal grain structure titanium[J]. Materials Science and Engineering A, 2020, 770(7): 138574. [11] Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197-7201. [12] Liverani E, Fortunato A. Additive manufacturing of AISI 420 stainless steel: Process validation, defect analysis and mechanical characterization in different process and post-process conditions[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117: 809-821. [13] 卢王张, 杨 莉, 张尧成, 等. 回火温度对等离子熔覆420不锈钢涂层显微组织和力学性能的影响[J]. 热加工工艺, 2023, 52(2): 129-132. Lu Wangzhang, Yang Li, Zhang Yaocheng, et al. Effects of tempering temperature on microstructure and mechanical properties of plasma cladding 420 stainless steel coatings[J]. Hot Working Technology, 2023, 52(2): 129-132. [14] 贡 海. 马氏体及其形态控制因素[J]. 金属热处理, 1981, 6(1): 10-22. [15] 孙 钢, 熊 茹, 唐 睿, 等. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 160-166. Sun Gang, Xiong Ru, Tang Rui, et al. Research progress on strengthening phase precipitation regulation and creep properties of aluminum-containing austenitic stainless steel[J]. Materials Reports, 2023, 37(9): 160-166. |