[1] Yang Jingran, Zhu Zhiqi, Han Shijie, et al. Evolution, limitations, advantages, and future challenges of magnesium alloys as materials for aerospace applications[J]. Journal of Alloys and Compounds, 2024, 1008: 176707. [2] Bai Jingying, Yang Yan, Wen Chen, et al. Applications of magnesium alloys for aerospace: A review[J]. Journal of Magnesium and Alloys, 2023, 11(10): 3609-3619. [3] Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications[J]. Journal of Magnesium and Alloys, 2023, 11(1): 78-87. [4] Xu Tiancai, Yang Yan, Peng Xiaodong, et al. Overview of advancement trend on magnesium alloy[J]. Journal of Magnesium and Alloys, 2019, 7: 536-544. [5] 王海清, 李建波, 王毅涛, 等. Mg-Gd-Zn高稀土镁基复合材料的变形行为[J]. 材料热处理学报, 2024, 45(7): 34-43. Wang Haiqing, Li Jianbo, Wang Yitao, et al. Deformation behaviors of Mg-Gd-Zn based high rare-earth magnesium matrix composites[J]. Transactions of Materials and Heat Treatment, 2024, 45(7): 34-43. [6] Zhang Jinghuai, Liu Shujuan, Wu Ruizhi, et al. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems[J]. Journal of Magnesium and Alloys, 2018, 6: 277-291. [7] 毕广利, 冉吉上, 满宏生, 等. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 230-237. Bi Guangli, Ran Jishang, Man Hongsheng, et al. Microstructure, processing properties and plastic deformation behavior of an extruded Mg-Y-Ni-Co alloy[J]. Materials Reports, 2024, 38(21): 230-237. [8] 王 旭, 黄元春, 王 强, 等. 异步轧制对Mg-Gd-Y-Zn-Zr板材组织、织构和性能的影响[J]. 稀有金属, 2023, 47(7): 934-941. Wang Xu, Huang Yuanchun, Wang Qiang, et al. Microstructure, texture and mechanical properties of Mg-Gd-Y-Zn-Zr sheet with different rolling speed[J]. Chinese Journal of Rare Metals, 2023, 47(7): 934-941. [9] Zheng Jie, Chen Zhe, Yan Zhaoming, et al. Preparation of ultra-high strength Mg-Gd-Y-Zn-Zr alloy by pre-ageing treatment prior to extrusion[J]. Journal of Alloys and Compounds, 2022, 894: 162490. [10] Yamasaki M, Sasaki M, Nishijima M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Materialia, 2007, 55(20): 6798-6805. [11] 罗宇伦, 杨 鸿, 董志华, 等. Mg-TM-RE系镁合金中LPSO相的研究进展[J]. 中国有色金属学报, 2024, 34(5): 1429-1452. Luo Yulun, Yang Hong, Dong Zhihua, et al. Research progress of LPSO phase in Mg-TM-RE alloy[J]. The Chniese Journal of Nonferrous Metals, 2024, 34(5): 1429-1452. [12] Kim J K, Sandlöbes S, Raabe D. On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures[J]. Acta Materialia, 2015, 82: 414-423. [13] Zhou Xiaojie, Liu Chuming, Gao Yonghao, et al. Improved workability and ductility of the Mg-Gd-Y-Zn-Zr alloy via enhanced kinking and dynamic recrystallization[J]. Journal of Alloys and Compounds, 2018, 749: 878-886. [14] Xu Chao, Nakata Taiki, Qiao Xiaoguang, et al. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy[J]. Scientific Reports, 2017, 7: 40846. [15] Wu Jing, Ikeda Ken-ichi, Shi Qi, et al. Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy[J]. Materials Characterization, 2019, 148: 233-242. [16] Wang Xu, Zhao Yongxing, Li Ming, et al. Achieving enhanced mechanical properties of extruded Mg-Gd-Y-Zn-Zr alloy by regulating the initial LPSO phases[J]. Materials Science and Engineering A, 2024, 917: 147411. [17] Ding Ning, Du Wenbo, Li Xudong, et al. Deformation mode and strengthening mechanism of Mg-Gd-Er-Zn-Zr alloy with different LPSO morphology[J]. Journal of Alloys and Compounds, 2024, 992: 174524. [18] Zhou Jianxin, Yang Hong, Xiao Jianfei, et al. Optimizing LPSO phase to achieve superior heat resistance of Mg-Gd-Y-Zn-Zr alloys by regulating the Gd/Y ratios[J]. Journal of Materials Research and Technology, 2023, 25: 4658-4673. [19] Wu Xia, Pan Fusheng, Cheng Renju, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy[J]. Materials Science and Engineering A, 2018, 726: 64-68. [20] Liang Dahui, Chen Mincong, Li Chuanqiang, et al. Mechanical property and anisotropy of as-extruded Mg-Zn-Y-Mn alloys with different volume fraction of long-period stacking ordered(LPSO) phase[J]. Journal of Rare Earths, 2024, 42: 2259-2269. [21] Yin Wujun, Briffod Fabien, Shiraiwa Takayuki, et al. Mechanical properties and failure mechanisms of Mg-Zn-Y alloys with different extrusion ratio and LPSO volume fraction[J]. Journal of Magnesium and Alloys, 2022, 8: 2158-2172. [22] 田凯凯, 李全安, 陈晓亚, 等. 热处理对Mg-8Gd-3Y-1.5Zn-0.6Zr合金组织与力学性能的影响[J]. 金属热处理, 2022, 47(11): 54-58. Tian Kaikai, Li Quanan, Chen Xiaoya, et al. Effect of heat treatment on microstructure and mechanical properties of Mg-8Gd-3Y-1.5Zn-0.6Zr alloy[J]. Heat Treatment of Metals, 2022, 47(11): 54-58. [23] Zhao Xueting, Shang Shan, Zhang Tianxiang, et al. Phase-field simulation on the influence of cooling rate on the solidification microstructure of Mg-Gd-Y ternary magnesium alloy[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3709-3717. [24] Cai Huisheng, Zhang Nannan, Liu Liang, et al. Effects of cooling rate on the microstructure and properties of magnesium alloy-a review[J]. Journal of Magnesium and Alloys, 2024, 12(8): 3094-3114. [25] Wang Dan, Fu Penghuai, Peng Liming, et al. Development of high strength sand cast Mg-Gd-Zn alloy by co-precipitation of the prismatic β′ and β1 phases[J]. Materials Characterization, 2019, 153: 157-168. [26] Zhang Song, Yuan Guangyin, Lu Chen, et al. The relationship between (Mg, Zn)3RE phase and 14H-LPSO phase in Mg-Gd-Y-Zn-Zr alloys solidified at different cooling rates[J]. Journal of Alloys and Compounds, 2011, 509: 3515-3521. [27] 黄元春, 王 舟, 马尚坤. 均匀化处理对 Mg-9.8Gd-3.5Y-2Zn-0.5Zr合金微观组织的影响[J]. 金属热处理, 2022, 47(10): 1-9. Huang Yuanchun, Wang Zhou, Ma Shangkun. Effect of homogenization treatment on microstructure of Mg-9.8Gd-3.5Y-2Zn-0.5Zr alloy[J]. Heat Treatment of Metals, 2022, 47(10): 1-9. [28] Zhou Xiaojie, Liu Chuming, Gao Yonghao, et al. Microstructure and mechanical properties of extruded Mg-Gd-Y-Zn-Zr alloys filled with intragranular LPSO phases[J]. Materials Characterization, 2018, 135: 76-83. [29] Fu Wei, Dang Pengfei, Guo Shengwu, et al. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy[J]. Journal of Materials Science & Technology, 2023, 134: 67-80. [30] Ovid′ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in Materials Science, 2018, 94: 462-540. [31] Zhu Yuntian, Wu Xiaolei. Heterostructured materials[J]. Progress in Materials Science, 2023, 131: 101019. [32] Wu Hao, Fan Guohua. An overview of tailoring strain delocalization for strength-ductility synergy[J]. Progress in Materials Science, 2020, 113: 100675. [33] Yang Xiaodong, Zhou Xiaojie, Yu Shilun, et al. Tensile behavior at various temperatures of the Mg-Gd-Y-Zn-Zr alloys with different initial morphologies of LPSO phases prior to extrusion[J]. Materials Science and Engineering A, 2022, 851: 143634. [34] Zhang Xiaohua, Shi Yuan, Li Jiaqi, et al. Improving strength-ductility of Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr magnesium alloy due to bimodal LPSO and <c+a> dislocations[J]. Journal of Rare Earths, 2025, 43(4): 832-842. [35] Zhou Jianxin, Luo Xiaojun, Yang Hong, et al. Introducing lamellar LPSO phase to regulate room and high-temperature mechanical properties of Mg-Gd-Y-Zn-Zr alloys by altering cooling rate[J]. Journal of Materials Research and Technology, 2023, 24: 7258-7268. [36] Wu Guoqin, Li Zhaocan, Yu Jianmin, et al. Texture evolution and effect on mechanical properties of repetitive upsetting-extruded and heat treatment Mg-Gd-Y-Zn-Zr alloy containing LPSO phases[J]. Journal of Alloys and Compounds, 2023, 938: 168666.[37] Han Yuxiang, Chen Zhiyong, Jiang Yuxuan, et al. Microstructure, deformation and fracture mechanism of Mg-Gd-Y-Zn-Zr alloy with different rolling routes during tension[J]. Materials Science and Engineering A, 2024, 915: 147275. [38] Zhang Deping, Li Boqiong, Chao Du, et al. Development of low rare-earth containing magnesium alloy with high strength-ductility synergy by engineering nano-spaced lamellae[J]. Journal of Materials Research and Technology, 2023, 27: 7233-7243. [39] Wu Guoqin, Li Zhaocan, Yu Jianmin, et al. Optimization in strength-ductility of Mg-RE-Zn alloy based on different repetitive upsetting extrusion deformation paths[J]. Materials and Design, 2023, 232: 112114. [40] Lv Binjiang, Peng Jian, Zhu Lili, et al. The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-5.8Y alloy[J]. Materials Science and Engineering A, 2014, 599: 150-159. [41] Yu Zijian, Xu Chao, Meng Jian, et al. Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg-Gd-Y-(Nd/Zn)-Zr alloys[J]. Materials Science and Engineering A, 2019, 762: 138080. [42] Chen Yuanli, Jin Li, Dong Jie, et al. Effects of LPSO/α-Mg interfaces on dynamic recrystallization behavior of Mg96.5Gd2.5Zn1 alloy[J]. Materials Characterization, 2017, 134: 253-259. [43] Liu Huan, Ju Jia, Yang Xiaowei, et al. A two-step dynamic recrystallization induced by LPSO phases and its impact on mechanical property of severe plastic deformation processed Mg97Y2Zn1 alloy[J]. Journal of Alloys and Compounds, 2017, 704: 509-517. [44] Ramezani S M, Zarei-Hanzaki A, Abedi H R, et al. Achievement of fine-grained bimodal microstructures and superior mechanical properties in a multi-axially forged GWZ magnesium alloy containing LPSO structures[J]. Journal of Alloys and Compounds, 2019, 793: 134-145. |