[1] 钟顺思, 王昌生. 轴承钢[M]. 北京: 冶金工业出版社, 2000. [2] Maloney J L, Tomasello C M . Case carburized stainless steel alloy for high temperature applications: EP19940308179[P]. 2021-12-19. [3] Tomasello C, Burrier H, Knepper R, et al. Progress in the evaluation of CSS-42LTM: A high performance bearing alloy[J]. Bearing Steel Technology, 2002, 1419: 375-385. [4] Wang F, Zhou C, Zheng L, et al. Improvement of the corrosion and tribological properties of CSS-42L aerospace bearing steel using carbon ion implantation[J]. Applied Surface Science, 2017, 392: 305-311. [5] Hetzner D W, Van Geertruyden W. Crystallography and metallography of carbides in high alloy steels[J]. Materials Characterization, 2008, 59(7): 825-841. [6] Scheuer C J, Silva L J, Das Neves J C K, et al. Tribological performance of low-temperature plasma carburized AISI 420 martensitic stainless steel[J]. Surface and Coatings Technology, 2024, 476: 130239. [7] Song C, Hu S, Han Q, et al. Ultrastrong gradient nanostructured CSS-42L bearing steel and its enhanced wear resistance at elevated temperature[J]. Surface and Coatings Technology, 2023, 470: 129881. [8] Karasev A V, Suito H. Effect of particle size distribution on austenite grain growth in Fe-0.05mass%C alloy deoxidized with Mn-Si, Ti, Mg, Zr and Ce[J]. ISIJ International, 2006, 46(5): 718-727. [9] Sun Z, Zhang C S, Yan M F. Microstructure and mechanical properties of M50NiL steel plasma nitrocarburized with and without rare earths addition[J]. Materials and Design, 2014, 55: 128-136. [10] 张玉全, 陈 勇, 臧立彬, 等. 合金元素的变化对20MnCr5钢齿轮渗碳淬火后性能的影响[J]. 金属热处理, 2022, 47(10): 78-87. Zhang Yuquan, Chen Yong, Zang Libin, et al. Influence of alloying element change on properties of 20MnCr5 steel gear after carburizing and quenching[J]. Heat Treatment of Metals, 2022, 47(10): 78-87. [11] 韩颢源, 张子博, 余万华, 等. 扩散时间对20MnCrS5齿轮钢真空渗碳的影响[J]. 金属热处理, 2022, 47(11):138-142. Han Haoyuan, Zhang Zibo, Yu Wanhua, et al. Effect of diffusion time on vacuum carburizing of 20MnCrS5 gear steel[J]. Heat Treatment of Metals, 2022, 47(11): 138-142. [12] Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012, 57(2): 268-435. [13] 吕虎跃, 陈旭阳, 丛培武, 等. 第二相析出强化真空渗碳淬火工艺[J]. 金属热处理, 2023, 48(5): 236-240. Lü Huyue, Chen Xuyang, Cong Peiwu, et al. Second phase precipitation strengthening process of vacuum carburizing and quenching[J]. Heat Treatment of Metals, 2023, 48(5): 236-240. [14] Zhang X, Liu W, Sun D, et al. The transformation of carbides during austenization and its effect on the wear resistance of high speed steel rolls[J]. Metallurgical and Materials Transactions A, 2007, 38(3): 499-505. [15] Gorunov A I. Investigation of M7C3, M23C6 and M3C carbides synthesized on austenitic stainless steel and carbon fibers using laser metal deposition[J]. Surface and Coatings Technology, 2020, 401: 126294. [16] Aizawa T, Mitsuo A, Yamamoto S, et al. Self-lubrication mechanism via the in situ formed lubricious oxide tribofilm[J]. Wear, 2005, 259: 708-718. [17] Wang F, Qian D S, Lu X H. Effect of prior cold deformation on the stability of retained austenite in GCr15 bearing steel[J]. Acta Metallurgica Sinica, 2019, 32(1): 107-115. |