[1] Zhang Xu, Yang Shanwu, Guo Hui, et al. Atmospheric corrosion behavior of weathering steel in periodically changed environment[J]. ISIJ International, 2014, 54(4): 909-915. [2] 林鹏飞, 杨忠民, 陈 颖, 等. 耐候钢锈层及其稳定化处理现状[J]. 钢铁, 2021, 56(3): 58-65. Lin Pengfei, Yang Zhongmin, Chen Ying, et al. Rust layer of weathering steel and its stabilization treatment status[J]. Iron and Steel, 2021, 56(3): 58-65. [3] 崔凯禹. 提高Q550NQRl耐候钢-40 ℃冲击功的工艺实践[J]. 特殊钢, 2018, 39(5): 54-57. Cui Kaiyu. Technology practice of increasing impact energy of weathering steel Q550NQR1 at -40 ℃[J]. Special Steel, 2018, 39(5): 54-57. [4] 付天乐, 沙 莎, 汪 兵, 等. 控轧控冷工艺对3.5%Ni耐候钢组织与性能的影响[J]. 金属热处理, 2025, 50(7): 204-211. Fu Tianle, Sha Sha, Wang Bing, et al. Effect of thermomechanical control process on microstructure and properties of weathering steel containing 3.5%Ni[J]. Heat Treatment of Metals, 2025, 50(7): 204-211. [5] 彭宁琦, 何 航, 罗 登, 等. 高强韧耐候桥梁钢Q500qENH的生产工艺[J]. 金属热处理, 2021, 46(8): 139-144. Peng Ningqi, He Hang, Luo Deng, et al. Production process of high strength and toughness weather-resistant bridge steel Q500qENH[J]. Heat Treatment of Metals, 2021, 46(8): 139-144. [6] 汪创伟. 含钒高强度耐候钢板Q450NQR1开发[J]. 钢铁钒钛, 2018, 39(3): 129-133. Wang Chuangwei. Development of high strength weathering steel Q450NQR1 containing vanadium[J]. Iron Steel Vanadium Titanium, 2018, 39(3): 129-133. [7] 周 聪, 张晨洋, 李运鑫, 等. Ti微合金化700 MPa级集装箱用耐候钢的组织性能[J]. 材料热处理学报, 2020, 41(7): 126-133. Zhou Cong, Zhang Chenyang, Li Yunxin, et al. Microstructure and properties of Ti microalloyed 700 MPa weathering steel for container[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 126-133. [8] 杨栋杰, 冯奕洁, 张 宁, 等. 微合金耐候钢的连续冷却转变及轧制温度对其组织与硬度的影响[J]. 金属热处理, 2025, 50(6): 18-26. Yang Dongjie, Feng Yijie, Zhang Ning, et al. Continuous cooling transformation of microalloyed weathering steel and effect of rolling temperature on its microstructure and hardness[J]. Heat Treatment of Metals, 2025, 50(6): 18-26. [9] 刘丽萍, 关晓光. 700 MPa级高强汽车用钢热轧工艺研究与应用[J]. 轧钢, 2018, 35(2): 20-25. Liu Liping, Guan Xiaoguang. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. [10] 衣海龙, 龙雷周, 刘振宇, 等. Mo-Ti微合化热轧高强钢的组织与性能[J]. 材料热处理学报, 2015, 36(12): 145-151. Yi Hailong, Long Leizhou, Liu Zhenyu, et al. Microstructure and mechanical properties of hot rolled Mo-Ti microalloyed high strength steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 145-151. [11] 陈 俊, 吕梦阳, 唐 帅, 等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50(5): 524-530. Chen Jun, Lü Mengyang, Tang Shuai, et al. Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metallurgica Sinica, 2014, 50(5): 524-530. [12] 杨庚蔚, 陆佳伟, 孙 辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能[J]. 钢铁研究学报, 2019, 31(8): 726-732. Yang Gengwei, Lu Jiawei, Sun Hui, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel[J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732. [13] 陈子豪, 张 可, 付锡彬, 等. V含量对Ti-V复合微合金钢组织和力学性能的影响[J]. 过程工程学报, 2021, 21(7): 827-835. Chen Zihao, Zhang Ke, Fu Xibin, et al. Effect of V content on microstructure and mechanical properties of Ti-V complex microalloyed steel[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 827-835. [14] 张金城, 孙胜辉, 蔡明晖, 等. 控轧控冷对Ti-Mo-Nb复合微合金化低碳钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(1): 155-162. Zhang Jincheng, Sun Shenghui, Cai Minghui, et al. Effect of TMCP on microstructure and mechanical properties of Ti-Mo-Nb microalloyed low carbon steel[J]. Heat Treatment of Metals, 2023, 48(1): 155-162. [15] 王 丽. 终轧温度和卷取温度对Ti-V微合金钢组织及析出物的影响[J]. 材料与冶金学报, 2024, 23(6): 577-584. Wang Li. Effects of finishing and coiling temperatures on microstructure and precipitate of Ti-V micro-alloyed steel[J]. Journal of Materials and Metallurgy, 2024, 23(6): 577-584. [16] Zheng Y X, Chu S K, Yang Q, et al. Microstructural evolution and carbides precipitation behavior and their effects on mechanical property of Nb-Ti microalloyed FB590 steel[J]. Materials Science and Engineering: A, 2024, 902: 146613. [17] Zhou F, Liu L, Chu X H, et al. Study on the evolution of multistage and multiscale Ti-bearing precipitation and microstructure in ultra high-strength titanium microalloyed weathering steels[J]. Materials Characterization, 2024, 217: 114368. [18] Ooi S W, Fourlaris G. A comparative study of precipitation effects in Ti only and Ti-V ultra low carbon (ULC) strip steels[J]. Materials Characterization, 2006, 56(3): 214-226. [19] 李桂艳, 时晓光, 赵宝纯, 等. 热变形对DP600汽车用钢连续冷却转变曲线的影响[J]. 材料科学与工程学报, 2009, 27(2): 219-221, 287. Li Guiyan, Shi Xiaoguang, Zhao Baochun, et al. Effect of the hot deformation on continuous cooling transformation curve for DP600 steels[J]. Journal of Materials Science and Engineering, 2009, 27(2): 219-221, 287. [20] 王云龙, 陈银莉, 余 伟. 不同形变条件下非调质钢45 MnSiVSQ的连续冷却转变[J]. 金属热处理, 2020, 45(12): 13-18. Wang Yunlong, Chen Yinli, Yu Wei. Continuous cooling transformation of non-quenched and tempered 45MnSiVSQ steel under different deformation conditions[J]. Heat Treatment of Metals, 2020, 45(12): 13-18. [21] 宋思颖, 田俊羽, 樊 雷, 等. 高性能建筑结构用钢Q460的动态和静态CCT曲线研究[J]. 武汉科技大学学报, 2021, 44(6): 406-414. Song Siying, Tian Junyu, Fan Lei, et al. Dynamic and static CCT curves of Q460 steel used for high performance building[J]. Journal of Wuhan University of Science and Technology, 2021, 44(6): 406-414. [22] 陈麒琳, 孙新军. Mn含量及卷取温度对TSCR流程生产Ti微合金高强钢组织与力学性能的影响[J]. 武汉科技大学学报, 2016, 39(3): 161-165. Chen Qilin, Sun Xinjun. Effect of Mn content and coiling temperature on the microstructure and mechanical properties of Ti-microalloyed high-strength steel produced by TSCR process[J]. Journal of Wuhan University of Science and Technology, 2016, 39(3): 161-165. [23] 李 显, 杨跃标, 叶 姜, 等. 热轧低碳铝镇静钢表层粗晶缺陷原因分析及控制措施[J]. 轧钢, 2020, 37(5): 25-29. Li Xian, Yang Yuebiao, Ye Jiang, et al. Causes analysis and control measures of coarse grain defects on the surface of hot rolled low-carbon aluminum killed steel strip[J]. Steel Rolling, 2020, 37(5): 25-29. [24] 任长春, 裴新华. 边部组织状态对低碳热轧酸洗板冲压成形的影响[J]. 锻压技术, 2012, 37(5): 133-136. Ren Changchun, Pei Xinhua. Effect of edge microstructure characteristic on formability of low carbon pickled steel sheet[J]. Forging & Stamping Technology, 2012, 37(5): 133-136. [25] 裴新华, 龚志辉. 热轧酸洗板深拉深成形凸耳形成因素研究[J]. 热加工工艺, 2014, 43(3): 88-91. Pei Xinhua, Gong Zhihui. Research on earing forming factor of hot rolled pickling plate in deep drawing[J]. Hot Working Technology, 2014, 43(3): 88-91. [26] 崔凯禹, 李正荣, 刘序江, 等. 终轧温度对压缩机用热轧酸洗板成形性能的影响[C]//第十三届中国钢铁年会论文集. 重庆: 中国金属学会, 2022: 7. Cui Kaiyu, Li Zhengrong, Liu Xujiang, et al. Effect of finishing temperature on forming properties of hot rolled pickling steel plate for compressor[C]//Proceedings of the 13th CSM Steel Congress. Chongqing: The Chinese Society for Metals, 2022: 7. [27] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [28] Shi Z R, Wang R Z, Su H, et al. Effect of nitrogen content on the second phase particles in V-Ti microalloyed shipbuilding steel during weld thermal cycling[J]. Materials and Design, 2016, 96(15): 241-250. [29] Singh P P, Ghosh S, Mula S. Strengthening behaviour and failure analysis of hot-rolled Nb+V microalloyed steel processed at various coiling temperatures[J]. Materials Science and Engineering A, 2022, 859: 144210. [30] Hall E O. The deformation and aging of mild steel: ⅢDiscussion of results[J]. Proceedings of the Physical Society, Section B, 1951, 64(9): 747-753. [31] Petch N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 174: 25-28. [32] 王鹏飞. 高强度低合金Q390钢TMCP工艺研究[D]. 沈阳: 东北大学, 2008. Wang Pengfei. Research on TMCP process of a grade Q390 type HSLA steel plate[D]. Shenyang: Northeastern University, 2008. |