[1] 张志磊, 陈纪昌, 黄宏川, 等. γ纤维织构份额对430铁素体不锈钢表面起皱的影响[J]. 金属热处理, 2016, 41(11): 1-6. Zhang Zhilei, Chen Jichang, Huang Hongchuan, et al. Effect of γ fiber texture fraction on surface ridging of 430 ferritic stainless steel[J]. Heat Treatment of Metals, 2016, 41(11): 1-6. [2] 邬珠仙, 李茂君, 张朝波, 等. 罩式退火对430铁素体不锈钢成型性及抗起皱性的影响[J]. 金属热处理, 2013, 38(5): 96-100. Wu Zhuxian, Li Maojun, Zhang Chaobo, et al. Effect of bell furnace annealing on formability and ridging resistance of 430 ferritic stainless steel[J]. Heat Treatment of Metals, 2013, 38(5): 96-100. [3] Speer J, Matlock D K, Cooman B, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [4] 贾 涓, 江 萱, 蒋建江, 等. 淬火配分时间对一种中锰钢耐磨性的影响[J]. 金属热处理, 2023, 48(5): 270-274. Jia Juan, Jiang Xuan, Jiang Jianjiang, et al. Effect of quenching-partition time on wear resistance of a medium manganese steel[J]. Heat Treatment of Metals, 2023, 48(5): 270-274. [5] Tkachev E, Borisov S, Borisova Y, et al. Austenite stabilization and precipitation of carbides during quenching and partitioning (Q&P) of low-alloyed Si-Mn steels with different carbon content[J]. Materials Science and Engineering A, 2024, 895: 146212. [6] Li Jiayu, Xu Yunbo, Jing Yi, et al. Improving the strength-ductility balance of medium-Mn Q&P steel by controlling cold-worked ferrite microstructure[J]. Materials Characterization, 2023, 205: 113377. [7] Mola J, Cooman B. Quenching and partitioning processing of transformable ferritic stainless steels[J]. Scripta Materialia, 2011, 65(9): 834-837. [8] 罗 刚, 梁祥祥, 张剑桥, 等. 中断淬火的温度对淬火-配分低铬铁素体不锈钢组织和性能的影响[J]. 上海金属, 2021, 43(5): 45-49. Luo Gang, Liang Xiangxiang, Zhang Jianqiao, et al. Effect of temperatures at the time of quenching interruption on microstructure and properties of a low-chromium ferritic stainless steel quenched and partitioned[J]. Shanghai Metals, 2021, 43(5): 45-49. [9] 谢胜涛, 刘振宇, 王国栋. 高性能节约型不锈钢制备技术研发与应用[J]. 中国工程科学, 2014, 16(1): 81-87. Xie Shengtao, Liu Zhenyu, Wang Guodong. Development and application of manufacturing technology for high-performance and cost-saving stainless steels[J]. Strategic Study of CAE, 2014, 16(1): 81-87. [10] Gao Fei, Gao Zilong, Zhu Qiyong, et al. Deformation behavior of retained austenite and its effect on plasticity based on in-situ EBSD analysis for transformable ferritic stainless steel[J]. Journal of Materials Research and Technology, 2022, 20: 1976-1992. [11] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响[J]. 金属学报, 2015, 51(5): 537-544. Li Xiaolin, Wang Zhaodong. Effect of one step Q&P process on microstructure and mechanical properties of a dual martensite steel[J]. Acta Metallurgica Sinica, 2015, 51(5): 537-544. [12] Liu Yajun, Gan Xiaolong, Wang Shuize, et al. Effect of partitioning treatment on the strengthening and plasticising mechanism of one-step quenching and partitioning steels[J]. Journal of Materials Research and Technology, 2024, 31: 1091-1103. [13] Flinkler D H, Schirra I. Transformation behaviour of the high temperature martensitic steels with 8-14% chromium[J]. Materials Technology, 1996, 67(8): 328-342. [14] Mishnev R, Borisova Y, Kniaziuk T, et al. Phase transformations during partitioning in a Q&P steel with blocky retained austenite[J]. Materials Science and Engineering A, 2024, 915: 147184. |