[1] 江 龙, 赵文普, 张超群. 热处理工艺对TC21钛合金室温和高温力学性能的影响[J]. 金属热处理, 2025, 50(2): 187-193. Jiang Long, Zhao Wenpu, Zhang Chaoqun. Effect of heat treatment process on mechanical properties at room temperature and high temperature of TC21 titanium alloy[J]. Heat Treatment of Metals, 2025, 50(2): 187-193. [2] 王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010, 20(S1): 958-963. Wang Dingchun. The development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963. [3] 李文平. 钛合金的应用现状及发展前景[J]. 轻金属, 2002(5): 53-55. Li Wenping. Development and application of titanium alloys[J]. Light Metals, 2002(5): 53-55. [4] 强 斌, 谢云杰, 雷 电, 等. 钢桥塔中锚室焊接变形预测与工艺优化[J]. 东南大学学报(自然科学版), 2025, 55(2): 459-467. Qiang Bin, Xie Yunjie, Lei Dian, et al. Welding deformation prediction and process optimization for the central anchor chamber in the steel bridge tower[J]. Journal of Southeast University(Natural Science Edition), 2025, 55(2): 459-467. [5] 龚宗辉, 谢兰生, 陈明和, 等. 新型TA32钛合金板的高温拉伸变形行为[J]. 机械工程材料, 2019, 43(1): 69-74. Gong Zonghui, Xie Lansheng, Chen Minghe, et al. High temperature tensile deformation behavior of new titanium alloy sheet TA32[J]. Materials for Mechanical Engineering, 2019, 43(1): 69-74. [6] 王庆娟, 杜旭东, 蒋 立, 等. 退火处理对TC4钛合金航空发动机叶片组织与力学性能的影响[J]. 金属热处理, 2024, 49(10): 126-132. Wang Qingjuan, Du Xudong, Jiang Li, et al. Effect of annealing on microstructure and mechanical properties of TC4 titanium alloy aeroengine blades[J]. Heat Treatment of Metals, 2024, 49(10): 126-132. [7] 汤海芳. Ti600合金组织和高温性能的研究[D]. 沈阳: 东北大学, 2010. [8] 李 芳, 陈业新, 万晓景, 等. 氢对Ti-60钛合金显微组织和高温力学性能的影响[J]. 金属学报, 2006, 42(2): 143-146. Li Fang, Chen Yexin, Wan Xiaojing, et al. Effects of hydrogen on the microstructure and high temperature mechanical properties of Ti-60 titanium alloy[J]. Acta Metallurgica Sinica, 2006, 42(2): 143-146. [9] 莫晓飞, 南 海, 刘 泉, 等. 热处理工艺对ZTA29铸造高温钛合金力学性能的影响[J]. 铸造, 2016, 65(6): 553-558. Mo Xiaofei, Nan Hai, Liu Quan, et al. Effects of heat treatment on mechanical properties of ZTA29 cast alloy[J]. Foundry, 2016, 65(6): 553-558. [10] 王 华, 曹 乐, 吴天栋. 热处理制度对TC11钛合金高温力学性能的影响[J]. 铸造技术, 2025, 46(1): 87-91. Wang Hua, Cao Le, Wu Tiandong. Effects of heat treatments on the high-temperature mechanical properties of TC11 titanium alloy[J]. Foundry Technology, 2025, 46(1): 87-91. [11] 谢洪志, 刘广鑫, 彭皓云, 等. Ti65钛合金板材高温力学性能及影响因素[J]. 兵器材料科学与工程, 2022, 45(2): 26-29. Xie Hongzhi, Liu Guangxin, Peng Haoyun, et al. High temperature mechanical properties and influencing factors of Ti65 titanium alloy sheet[J]. Ordnance Material Science and Engineering, 2022, 45(2): 26-29. [12] 李明兵, 王新南, 商国强, 等. 近α型、(α+β)型和近β型钛合金的高温力学性能[J]. 金属热处理, 2022, 47(11): 199-204. Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. High temperature mechanical properties of near α, (α+β) and near β type titanium alloys[J]. Heat Treatment of Metals, 2022, 47(11): 199-204. [13] 回 丽, 谢里阳, 何雪浤, 等. TC2钛合金焊缝与母材性能对比试验研究[J]. 机械强度, 2004, 26(4): 428-430. Hui Li, Xie Liyang, He Xuehong, et al. Contratest study on properties of TC2 titanium alloy weld and base material[J]. Journal of Mechanical Strength, 2004, 26(4): 428-430. [14] 李沐泽, 柏春光, 张志强, 等. TC2钛合金的高温热变形行为[J]. 材料研究学报, 2020, 34(12): 892-904. Li Muze, Bai Chunguang, Zhang Zhiqiang, et al. Hot deformation behavior of TC2 titanium alloy[J]. Chinese Journal of Materials Research, 2020, 34(12): 892-904. [15] 王付胜, 王艾伦, 陈亚军, 等. 航空TC4钛合金高温力学性能[J]. 热加工工艺, 2017, 46(10): 86-89, 93. Wang Fusheng, Wang Ailun, Chen Yajun, et al. High temperature mechanical properties of aeronautical TC4 titanium alloy[J]. Hot Working Technology, 2017, 46(10): 86-89, 93. [16] 缪宏博, 刘高扬, 石国全, 等. 发动机关键结构材料温色图谱[M]. 北京: 国防工业出版社, 2010. [17] Liu C C, Li Y H Z, Gu J, et al. Phase transformation in titanium alloys: A review[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(10): 3093-3117. [18] Koike J, Shimoyama Y, Ohnuma I, et al. Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy[J]. Acta Materialia, 2000, 48(9): 2059-2069. [19] Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing[J]. Acta Materialia, 2011, 59(10): 4138-4150. [20] Liu B, Matsumoto H, Li Y P, et al. Dynamic phase transformation during hot-forging process of a powder metallurgy α+β titanium alloy[J]. Materials Transactions, 2012, 53(5): 1007-1010. [21] Jia Y, Ma Y, Su H, et al. The stress-induced α″ and its effect on the aging microstructure and mechanical properties in an α+β titanium alloy[J]. Materials Characterization, 2024, 209: 113734. [22] Sun F, Zhang J Y, Vermaut P, et al. Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging[J]. Materials Research Letters, 2017, 5(8): 547-553. [23] Kim H Y, Hashimoto S, Kim J I, et al. Mechanical properties and shape memory behavior of Ti-Nb alloys[J]. Materials Transactions, 2004, 45(7): 2443-2448. |