金属热处理 ›› 2025, Vol. 50 ›› Issue (11): 1-6.DOI: 10.13251/j.issn.0254-6051.2025.11.001

• 材料研究 •    下一篇

低碳马氏体不锈钢的TRIP效应

邱旭扬帆1, 程兴旺1,2, 王迎春1,2, 杨彬1, 何金1, 谷金波3, 迟宏宵3   

  1. 1.北京理工大学 材料学院, 北京 100081;
    2.冲击环境材料技术国家级重点实验室, 北京 100081;
    3.钢铁研究总院有限公司 特殊钢研究院, 北京 100081
  • 收稿日期:2025-05-27 修回日期:2025-09-01 发布日期:2025-12-16
  • 通讯作者: 王迎春,副教授,博士,E-mail: wangyc@bit.edu.cn
  • 作者简介:邱旭扬帆(1995—),男,博士研究生,主要研究方向为高强钢研制,E-mail:18401669210@163.com。
  • 基金资助:
    国家科技重大专项(J2019-VI-0019-0134)

TRIP effect of a low-carbon martensitic stainless steel

Qiu Xuyangfan1, Cheng Xingwang1,2, Wang Yingchun1,2, Yang Bin1, He Jin1, Gu Jinbo3, Chi Hongxiao3   

  1. 1. School of Materials Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
    2. National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing 100081, China;
    3. Research Institute of Special Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
  • Received:2025-05-27 Revised:2025-09-01 Published:2025-12-16

摘要: 对一种低碳马氏体不锈钢进行不同工艺的深冷+回火处理,并采用SEM、TEM、EBSD、XRD和拉伸试验对其组织和性能进行表征,研究了不同含量和形貌特征的残留奥氏体在拉伸过程中发生相变诱导塑性(TRIP)效应的规律及其对强塑性的影响。结果表明,在拉伸过程中,大部分残留奥氏体在应变小于1.5%时,发生了马氏体相变,转变量达到75%;应变大于1.5%后,随着变形增加,转变仍在进行,但转变速率减缓;当应变超过4.0%时,几乎全部的残留奥氏体均转变为马氏体。拉伸过程中的TRIP效应有效提高了试验钢的应变硬化能力和抗拉强度,两次深冷+回火后基体内形成数量更多的薄膜状奥氏体,有利于塑性的进一步提升。相较于一次深冷+回火处理试样,有着更多残留奥氏体的两次深冷+回火处理试样的屈服强度、抗拉强度和断裂总延伸率均有提高,分别为1444 MPa、1901 MPa和12.8%。

关键词: 低碳马氏体钢, 深冷+回火处理, 残留奥氏体, TRIP效应, 力学性能

Abstract: Different processes of cryogenic treatment+tempering were applied to a low-carbon martensitic stainless steel. The microstructure and properties of the tested steel were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD), and tensile tests. The law of transformation-induced plasticity (TRIP) effect occurring in retained austenite with different contents and morphological characteristics during the tensile process, as well as its effect on strength and plasticity, were investigated. The results show that during the tensile process, most of the retained austenite undergoes martensitic transformation when the strain is less than 1.5%, with the transformation amount reaching 75%. After the strain exceeds 1.5%, the transformation continues as the deformation increases, but the transformation rate slows down. When the strain exceeds 4.0%, almost all the retained austenite is transformed into martensite. The TRIP effect during the tensile process effectively improves the strain hardening capacity and tensile strength of the steel. The formation of a greater number of film-like retained austenite in the matrix after double cryogenic treatment+tempering is conducive to the further improvement of plasticity. Compared with the specimen treated by single cryogenic treatment+tempering, the specimen treated by double cryogenic treatment+tempering, which contain, a higher content of retained austenite, exhibits higher yield strength, tensile strength, and percentage total extension at fracture, with the values reaching 1444 MPa, 1901 MPa, and 12.8%, respectively.

Key words: low-carbon martensitic steel, cryogenic treatment+tempering, retained austenite, TRIP effect, mechanical properties

中图分类号: