[1] Chen X, Zheng L, Feng S, et al. Tempering influence on microstructural evolution and mechanical properties in a core of CSS-42L bearing steel[J]. Materials Science and Engineering A, 2022, 861: 144233. [2] Seo S, Choi H, Lee G, et al. Effect of cooling rate on microstructure and hardness during solution treatment and aging process of Ti-6Al-4V alloy for aerospace components[J]. Journal of Materials Engineering and Performance, 2021, 30: 3406-3415. [3] Calderon-Herández J W, Gonzalez-Ramirez M F, Sepulveda-Castano J M, et al. Electrochemical characterization of 13Cr low-carbon martensitic stainless steel-corrosion study with a mini-cell setup[J]. Journal of Materials Research and Technology, 2022, 21: 2989-2998. [4] 杨 柯, 牛梦超, 田家龙, 等. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585. Yang Ke, Niu Mengchao, Tian Jialong, et al. Research on martensitic aging stainless steel for landing gear of a new generation of aircraft[J]. Acta Metallurgica Sinica, 2018, 54(11): 1567-1585. [5] 俞 峰, 陈兴品, 徐海峰, 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522. Yu Feng, Chen Xingpin, Xu Haifeng, et al. Current status of metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 513-522. [6] Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. Journal of Alloys and Compounds, 2022, 928(20): 167135. [7] Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging[J]. Materials Science and Engineering A, 2018, 732: 167-177. [8] 程 瑄, 桂晓露, 高古辉. 综述: 先进高强钢中的残余奧氏体[J]. 材料导报, 2023, 37(7): 1-29. Chen Xuan, Gui Xiaolu, Gao Guhui. Review: Retained austenite in advanced high strength steels[J]. Materials Reports, 2023, 37(7): 1-29. [9] Chen X F, Zheng L J, Feng S C, et al. Tempering influence on microstructural evolution and mechanical properties in a core of CSS-42L bearing steel[J]. Materials Science and Engineering A, 2022, 861: 144233. [10] Luo H, Wang X, Liu Z, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. Journal of Materials Sciences and Technology, 2020, 51: 130-136. [11] Yang D Z, Xiong Z P, Zhang C, et al. Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel[J]. Journal of Iron and Steel Research International, 2022, 29(9): 1393-1403. [12] Mikus E B, Hughel T J, Gerty J M, et al. The dimensional stability of a precision ball bearing material[J]. Transactions of the American Society for Metals, 1960, 52: 307-320. [13] Xiong Z P, Jacques P J, Perlade A, et al. Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel[J]. Scripta Materialia, 2018, 157: 6-9. [14] 李 雄, 李士燕, 张鸿冰, 等. 6W-5Mo-4Cr-2V高速钢冷处理微观组织结构的分析[J]. 上海交通大学学报, 2002, 36(7): 905-907, 910. Li Xiong, Li Shiyan, Zhang Hongbing, et al. Microstructure of 6W-5Mo-4Cr-2V high speed steel after cryogenic treatment[J]. Journal of Shanghai Jiao Tong University, 2002, 36(7): 905-907, 910. [15] Meng F, Tagashira K, Sohma H. Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel[J]. Scripta Metallurgica et Materialia, 1994, 31(7): 865-868. [16] Zhang T, Hu J, Wang C, et al. The effect of deep cryogenic treatment on the microstructure and mechanical properties of an ultrahigh strength TRlP aided bainitic steel[J]. Materials Characterization, 2021, 178: 111247. [17] Sugimoto K I, Kobayashi M, Hashimoto S I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metallurgical and Materials Transactions A, 1992, 23(11): 3085-3091. [18] Sugimoto K I, Usui N, Kobayashi M, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ International, 1992, 32(12): 1311-1318. [19] 袁晓虹. 高Cr-Co-Mo轴承钢强韧机制及抗疲劳特性的多尺度研究[D]. 昆明: 昆明理工大学, 2015. [20] 白 璇. 冷处理对超级马氏体不锈钢组织和逆变奥氏体的影响[D]. 昆明: 昆明理工大学, 2016. [21] Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging[J]. Materials Science and Engineering A, 2018, 732(8): 167-177. [22] 徐祖耀, 吕 伟, 王永瑞. 稀土对低碳钢马氏体相变的影响[J]. 钢铁, 1995, 30(4): 52-58. Xu Zuyao, Lü Wei, Wang Yongrui. Influence of rare earth elements on martensitic transformation in low carbon steel[J]. Iron and Steel, 1995, 30(4): 52-58. [23] Durnin J, Ridal K A. Determination of retained austenite in steel by X-ray diffraction[J]. Journal of the Iron and Steel Institute, 1968, 10: 206. [24] Kinsman K R, Shyne J C. The thermal stabilization of austenite[J]. Acta Metallurgica, 1966, 14(9): 1063-1072. [25] Li S H, Zhao K, Wang K, et al. Microstructural evolution and thermal stability after aging of a cobalt-containing martensite bearing steel[J]. Materials Characterization, 2017, 124: 154-164. [26] Song Y Y, Ping D H, Yin X Y, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Science and Engineering A, 2010, 527(3): 614-618. [27] Nakagawa H, Miyazaki T, Yokota H. Effects of aging temperature on the microstructure and mechanical properties of 1.8Cu-7.3Ni-15.9Cr-1.2Mo-low C, N martensitic precipitation hardening stainless steel[J]. Journal of Materials Science, 2000, 35(9): 2245-2253. |