[1] Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process[J]. Surface and Coatings Technology, 2015, 262: 210-215. [2] 孟凡月, 苗正坤, 张 静, 等. 热浸镀锌板锌层缺陷影响因素及控制方法[J]. 涂层与防护, 2023, 44(11): 29-35. Meng Fanyue, Miao Zhengkun, Zhang Jing, et al. Influential factors and control methods of zinc coating defects on hot-dip galvanized sheet[J]. Coating and Protection, 2023, 44(11): 29-35. [3] 姚 舜, 田 耕, 马幸江, 等. 板带钢热浸镀锌铝镁技术的研究进展[J]. 钢铁研究学报, 2023, 35(12): 1451-1462. Yao Shun, Tian Geng, Ma Xingjiang, et al. Research status of hot-dip galvanized Zn-Al-Mg sheet[J]. Journal of Iron and Steel Research, 2023, 35(12): 1451-1462. [4] 郭太雄, 金永清, 张 勇, 等. 热镀锌板镀层耐剥离性研究[J]. 钢铁钒钛, 2010, 31(3): 30-33. Guo Taixiong, Jin Yongqing, Zhang Yong, et al. Study on flaking resistance of hot-dip galvanizing coating[J]. Iron Steel Vanadium Titanium, 2010, 31(3): 30-33. [5] Garcia F, Salinas A, Nava E. The role of Si and Ti additions on the formation of the alloy layer at the interface of hot-dip Al-Zn coatings on steel strips[J]. Materials Letters, 2006, 60(6): 775-778. [6] Jabbar M A, Yousif M Y, Jasim N H. Effect of elemental additions on hot-dipping galvanization behavior[J]. Cogent Engineering, 2023, 10(1): 2220480. [7] Blumenau M, Norden M, Friedel F, et al. Reactive wetting during hot-dip galvanizing of high manganese alloyed steel[J]. Surface and Coatings Technology, 2011, 205(10): 3319-3327. [8] Marder A R. The metallurgy of zinc-coated steel[J]. Progress in Materials Science, 2000, 45(3): 191-271. [9] Bhattacharya D, Cheng C. Mechanism of the effect of Nb on the galvannealing behavior of IF steels [C]//International Conference on Zinc and Zinc Alloy Coated Sheet Steels. 2005: 509-516. [10] Long Z H, Li J F, Gong W P, et al. Phase equilibria in Zn-Nb-Ti ternary system at 600 and 450 ℃[J]. Calphad, 2023, 83: 102630. [11] Tang N Y, Su X, Toguri J M. Experimental study and thermodynamic assessment of the Zn-Fe-Ni system[J]. Calphad, 2001, 25(2): 267-277. [12] 辛虹阳, 毛建军, 张 伟, 等. 等温退火对锆合金表面非晶AlNbTiZr中熵合金涂层结构与力学性能的影响[J]. 原子能科学技术, 2022, 56(S1): 130-137. Xin Hongyang, Mao Jianjun, Zhang Wei, et al. Effect of isothermal annealing on microstructure and mechanical property of amorphous AlNbTiZr medium entropy alloy coating on zirconium alloy surface[J]. Atomic Energy Science and Technology, 2022, 56(S1): 130-137. [13] 王 唯, 孟增东, 罗丽琳, 等. 羟基磷灰石/Ti-13Nb-13Zr复合材料的组织性能与细胞相容性评价[J]. 复合材料学报, 2023, 40(1): 428-436. Wang Wei, Meng Zengdong, Luo Lilin, et al. Microstructure, properties and cytocompatibility evaluation of hydroxyapatite/Ti-13Nb-13Zr composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 428-436. [14] Li X Q, Zhang Q, Lou W P, et al. Microstructure and texture of pure copper under large compression deformation and different annealing times[J]. Coatings, 2023, 13(12): 13122093. [15] 刘晓涛, 王群骄, 张云龙, 等. 均匀化退火工艺对Al-Zn-Mg-Cu-Zr高强合金第二相的影响[J]. 轻合金加工技术, 2023, 51(10): 14-21. Liu Xiaotao, Wang Qunjiao, Zhang Yunlong, et al. Effect of the homogenization annealing process on the second phase of a high-strength Al-Zn-Mg-Cu-Zr alloy[J]. Light Alloy Fabrication Technology, 2023, 51(10): 14-21. [16] Arjmand S, Khayati G R, Akbari G H. Al/Ti5Si3-Al3Ti composite prepared via in-situ surface coating of Ti using tungsten inert gas welding[J]. Journal of Alloys and Compounds, 2019, 808: 151739. [17] Sarkar S, Mukherjee S, Kumar C S, et al. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5PH stainless steel parts built by selective laser melting process[J]. Journal of Manufacturing Processes, 2020, 50: 279-294. [18] Babu C V, Ramji K, Thirumala R G. Investigation on microhardness and corrosion resistance of ZnO reinforced Ni-P composite coatings at various annealing temperatures[J]. Advances in Materials and Processing Technologies, 2022, 8(1): 945-958. [19] Zhu M, Zhao B Z, Yuan Y F, et al. Effect of annealing time on microstructure and corrosion behavior of CoCrFeMnNi high-entropy alloy in alkaline soil simulation solution[J]. Corrosion Communications, 2021, 3: 45-61. [20] Salehi M, Yeganeh M, Heidari R B, et al. Comparison of the microstructure, corrosion resistance, and hardness of 321 and 310S austenitic stainless steels after thermo-mechanical processing[J]. Materialstoday: Communications, 2022, 31: 103638-103648. [21] Yang Z B, Chen Z Q, Qiu J, et al. Correlation between microstructure and corrosion behavior of Zr-0.8Sn-1Nb-0.3Fe alloy[J]. Rare Metal Materials and Engineering, 2018, 47(3): 794-798. |