[1] 杜瑜宾, 胡小锋, 宋元元, 等. 含Cu的HSLA钢中富Cu团簇的粗化行为及其对力学性能的影响[J]. 材料热处理学报, 2021, 42(9): 136-143. Du Yubin, Hu Xiaofeng, Song Yuanyuan, et al. Coarsening behavior of Cu-rich clusters in a Cu bearing HSLA steel and its effect on mechanical properties[J]. Transactions of Materials and Heat Treatment, 2021, 42(9): 136-143. [2] Jaind D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides[J]. Metallurgical and Materials Transactions A, 2016, 47: 3860-3872. [3] Ghosh A, Mishra B, Das S, et al. Structure and properties of a low carbon Cu bearing high strength steel[J]. Metallurgical and Materials Transactions A, 2005, 396: 320-332. [4] Zhang Z W, Liu C T, Wen Y R, et al. Influence of aging and thermomechanical treatments on mechanical properties of a nanocluster-strengthened ferritic steel[J]. Metallurgical and Materials Transactions A, 2011, 43: 351-359. [5] 王惟一, 潘应君, 周乃鹏, 等. 直接淬火对590 MPa含铜HSLA钢组织演变及力学性能的影响[J]. 金属热处理, 2025, 50(3): 118-124. Wang Weiyi, Pan Yingjun, Zhou Naipeng, et al. Effect of direct quenching on microstructure evolution and mechanical properties of a 590 MPa Cu-bearing HSLA steel[J]. Heat Treatment of Metal, 2025, 50(3): 118-124. [6] Zou Y, Xu Y B, Han D T, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel[J]. Materials Science and Engineering A, 2018, 729: 423-432. [7] Bhagat A N, Pabi S K, Ranganathan S, et al. Aging behaviour in copper bearing high strength low alloy steels[J]. ISIJ International, 2004, 44: 115-122. [8] Weidig U, Hübner K, Steinhoff K. Bulk steel products with functionally graded properties produced by differential thermo-mechanical processing[J]. Steel Research International, 2008, 79(1): 59-65. [9] Davenport E S, Bain E C. Transformation of austenite at constant subcritical temperatures[J]. Metallurgical and Materials Transactions B, 1970, 1(12): 3503-3530. [10] 王利鹏, 葛君超, 代昆宏. 热处理工艺对低碳高铜HSLA钢组织与力学性能的影响[J]. 金属热处理, 2024, 49(5): 199-203. Wang Lipeng, Ge Junchao, Dai Kunhong. Effect of heat treatment on microstructure and mechanical properties of low carbon high copper HSLA steel[J]. Heat Treatment of Metals, 2024, 49(5): 199-203. [11] Tian J Y, Chen G H, Xu Y W, et al. Comprehensive analysis of the effect of ausforming on the martensite start temperature in a Fe-C-Mn-Si medium-carbon high-strength bainite steel[J]. Metallurgical and Materials Transactions A, 2019, 50(10): 4541-4549. [12] 郭子峰, 郭 佳, 张 衍, 等. 首钢热轧酸洗先进高强钢的开发与进展[J]. 中国冶金, 2019, 29(6): 17-20.Guo Zifeng, Guo Jia, Zhang Yan, et al. Development and progress of hot rolled pickled advanced high strength steel of Shougang[J]. China Metallurgy, 2019, 29(6): 17-20. [13] 刘 曼, 胡海江, 田俊羽, 等. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756. Liu Man, Hu Haijiang, Tian Junyu, et al. Effect of ausforming on the microstructures and mechanical properties of an ultra-high strength bainitic steel[J]. Acta Metallurgica Sinica, 2021, 57(6): 749-756. [14] Kumar A, Singh A. Deformation mechanisms in nanostructured bainitic steels under torsion[J]. Materials Science and Engineering, 2020, 770(7): 138528. [15] Dijk N H V, Butt A M, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Materialia, 2005, 53(20): 5439-5447. [16] Avishan B, Yazdani S, Nedjad S H. Toughness variations in nanostructured bainitic steels[J]. Materials Science and Engineering A, 2012, 548: 106-111. [17] Kumar A, Singh A. Microstructural effects on the sub-critical fatigue crack growth in nano-bainite[J]. Materials Science and Engineering A, 2019, 743: 464-471. [18] 田亚强, 姚 硕, 张明山, 等. 贝氏体等温温度对两相区轧制舰船用钢组织性能的影响[J]. 金属热处理, 2024, 49(11): 167-171. Tian Yaqiang, Yao Shou, Zhang Mingshan, et al. Effect of isothermal bainite temperature on microstructure and properties of ship steel after intercritical rolling[J]. Heat Treatment of Metals, 2024, 49(11): 167-171. |