[1] 牛 超, 陈新平, 林建平. 基于数字图像相关法的第三代先进高强钢QP980成形性能评价[J]. 宝钢技术, 2020(4): 8-13. Niu Chao, Chen Xinping, Lin Jianping. Evaluation of formability of the 3th advanced high strength steels QP980 based on digital image correlation method[J]. Baosteel Technology, 2020(4): 8-13. [2] 刘立现. 预应变对高强钢DH780微观组织及力学性能的影响[J]. 热加工工艺, 2022, 51(7): 97-101. Liu Lixian. Effect of pre-strain on microstructure and mechanical properties of high strength steel DH780[J]. Hot Working Technology, 2022, 51(7): 97-101. [3] 胡汉江, 赵爱民, 印珠凯, 等. 预应变对TRIP钢力学性能及硬化行为的影响[J]. 材料热处理学报, 2016, 37(5): 128-132. Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. Effect of pre-strain on mechanical properties and hardening behavior of TRIP steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(5): 128-132. [4] 乔书杰, 张晓莹. 预应变对汽车双相钢材料成形性的影响[J]. 锻压技术, 2020, 45(11): 181-186. Qiao Shujie, Zhang Xiaoying. Influence of pre-strain on formability of dual-phase steel material for automobile[J]. Forging and Stamping Technology, 2020, 45(11): 181-186. [5] 周湛淞, 方 刚, 张钧萍, 等. 预应变和烘烤对QP980冷轧板材组织与力学性能的影响[J]. 汽车工艺与材料, 2024(6): 24-30. Zhou Zhansong, Fang Gang, Zhang Junping, et al. Effects of pre-strain and baking on microstructure and mechanical properties of QP980 cold rolled sheet [J]. Automobile Technology and Material, 2024(6): 24-30. [6] 张 鹏, 李 兵, 徐飞越, 等. 预变形对Q&P钢微观组织及烘烤硬化性能的影响[J]. 材料热处理学报, 2024, 45(6): 101-110. Zhang Peng, Li Bing, Xu Feiyue, et al. Effect of pre-strain on microstructure and bake hardening properties of Q&P steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(6): 101-110. [7] 朱国明, 康永林, 朱 帅. 汽车用超高强QP钢的工艺与组织性能研究[J]. 机械工程学报, 2017, 53(12): 110-117. Zhu Guoming, Kang Yonglin, Zhu Shuai. Study on process, microstructure and property of ultra-high strength QP steel for automobile [J]. Journal of Mechanical Engineering, 2017, 53(12): 110-117. [8] Pereira R, Peixinho N, Costa L S. A review of sheet metal forming evaluation of advanced high-strength steels (AHSS)[J]. Metals, 2024, 14(4): 14040394. [9] Srivastava A, Ghassemi-Armaki H, Sung H, et al. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 46-69. [10] 王秋雨, 夏明生, 刘淑影, 等. 组织特征对980 MPa级先进超高强钢成形性能和拉伸行为的影响[J]. 机械工程材料, 2023, 47(1): 100-105, 118. Wang Qiuyu, Xia Mingsheng, Liu Shuying, et al. Effect of microstructure characteristics on formability and tensile behavior of 980 MPa grade advanced ultra-high strength steels[J]. Materials For Mechanical Engineering, 2023, 47(1): 100-105, 118. [11] Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands[J]. Materials Science and Engineering A, 2016, 679: 230-239. [12] Demeri M Y. Forming of Advanced High-Strength Steels[M]//Metalworking: Sheet Forming. ASM International, 2006: 530-538. [13] Timokhina B I, Hodgson D P, Pereloma V E. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels[J]. Metallurgical and Materials Transactions A, 2004, 35(8): 2331-2341. [14] Wang J, Zwaag S V D. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1527-1539. [15] Santofimia M J, Zhao L, Sietsma J. Influence of deformation on the microstructure and mechanical properties of Q&P steels[J]. Acta Materialia, 2011, 59(17): 6059-6068. |