[1] 罗小兵, 朱 飞, 杨才福, 等. 纳米粒子强化含铜双相钢的组织性能关系[J]. 钢铁, 2021, 56(9): 118-128. Luo Xiaobing, Zhu Fei, Yang Caifu, et al. Relationship between microstructure and mechanical properties in dual-phase Cu-bearing steel strengthened by nano sized precipitates[J]. Iron and Steel, 2021, 56(9): 118-128. [2] Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Materialia, 2019, 172(6): 150-160. [3] Shi X B, Yan W, Wang W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking[J]. Materials and Design, 2016, 92(2): 300-305. [4] Hosseini F A R, Mousavi A S H, Abbasi S M. The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type[J]. Materials Science and Engineering A, 2019, 746(2): 384-393. [5] Kan L Y, Ye Q B, Wang Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Materials Science and Engineering A, 2021, 802(1): 6-10. [6] Pavel S, Aleksandr G, Milan S, et al. Effect of Cu alloying on mechanical properties of medium-C steel after long-time tempering at 500 ℃[J]. Materials, 2023, 16(6): 2390. [7] 周 成, 赵 坦, 叶其斌, 等. 回火温度对1000 MPa级NiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569. Zhou Cheng, Zhao Tan, Ye Qibin, et al. Effects of tempering temperature on microstructure and low-temperature toughness of 1000 MPa grade NiCrMoV low carbon alloyed steel[J]. Acta Metallurgica Sinica, 2022, 58(12): 1557-1569. [8] Dhua S, Ray A, Sarma D. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels[J]. Materials Science and Engineering A, 2001, 318(1): 197-210. [9] Dhua S K, Mukerjee D, Sarma D S. Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates[J]. Metallurgical and Materials Transactions A, 2001, 32: 2259. [10] Kan L Y, Ye Q B, Wang Z D, et al. Improvement of strength and toughness of 1 GPa Cu-bearing HSLA steel by direct quenching[J]. Materials Science and Engineering A, 2022, 855(10): 10-14. [11] Zou Y, Xu Y, Han D, et al. Aging characteristics and strengthening behavior of a low-carbon medium-Mn Cu-bearing steel[J]. Materials Science and Engineering A, 2018, 729(6): 423-432. [12] Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Materialia, 2019, 172: 150-160. [13] 余锡模, 赵世金. 含Cu和Ni低碳高强度钢等时回火析出富Cu相的研究[J]. 金属学报, 2013, 49(5): 569-575. Yu Ximo, Zhao Shijin. Study on Cu precipitate of the low C high strength steel containing Cu and Ni during isochronal tempering[J]. Acta Metallurgica Sinica, 2013, 49(5): 569-575. [14] Ping D H, Ohnuma M, Hirakawa Y, et al. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel[J]. Materials Science and Engineering A, 2005, 394(1/2): 285-295. [15] 程 石, 胡 锋, 王亚超, 等. 回火热处理对低碳高强度钢低温冲击韧性的影响[J]. 材料热处理学报, 2020, 41(12): 80-89. Cheng Shi, Hu Feng, Wang Yachao, et al. Effect of tempering heat treatment on low-temperature impact toughness of low-carbon high-strength steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 80-89. [16] Dye D, Hunziker O, Reed R C. Numerical analysis of the weldability of superalloys[J]. Acta Materialia, 2001, 49(4): 683-697. [17] Bambach M D, Bleck W, Kramer H S, et al. Tailoring the hardening behavior of 18CrNiMo7-6 via Cu alloying[J]. Steel Research International, 2016, 87(5): 550-561. [18] 葛 琛, 赵洪山, 郑 磊, 等. 900 MPa级高强钢的连续冷却转变及组织调控分析[J]. 钢铁, 2023, 58(3): 128-134. Ge Chen, Zhao Hongshan, Zheng Lei, et al. Analysis on continuous cooling transformation and microstructure control of 900 MPa grade high strength steel[J]. Iron and Steel, 2023, 58(3): 128-134. [19] Jain D, Isheim D, Seidman D N. Carbon redistribution and carbide precipitation in a high-strength low-carbon HSLA-115 steel studied on a nanoscale by atom probe tomography[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3205-3219. [20] Zhao Y, Tong X, Wei X H, et al. Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel[J]. International Journal of Plasticity, 2019, 116(5): 203-215. |