[1] 樊 伟, 冯运莉, 王宇辰, 等. Fe-0.4C-10Mn-4Al系TRIP钢的显微组织与拉伸性能分析[J]. 热加工工艺, 2022, 51(18): 63-67. Fan Wei, Feng Yunli, Wang Yuchen, et al. Analysis of microstructure and tensile properties of Fe-0.4C-10Mn-4Al TRIP steel[J]. Hot Working Technology, 2022, 51(18): 63-67. [2] 余 浩, 杨 璐, 潘红波, 等. δ-TRIP钢等温退火组织演变机制及力学性能[J]. 钢铁, 2024, 59(11): 173-182. Yu Hao, Yang Lu, Pan Hongbo, et al. Microstructure evolution mechanism and mechanical properties of δ-TRIP steel during isothermal annealing[J]. Iron and Steel, 2024, 59(11): 173-182. [3] Hirsch J. Recent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002. [4] 于 燕, 杨海峰, 刘云旭. Si-Mn系TRIP钢板的组织性能稳定性[J]. 金属热处理, 2013, 38(8): 73-75. Yu Yan, Yang Haifeng, Liu Yunxu. Stability of microstructure and properties of Si-Mn TRIP steel sheets[J]. Heat Treatment of Metals, 2013, 38(8): 73-75. [5] 刘仁东, 郭金宇, 王 福. 鞍钢高强汽车用钢研发进展[J]. 上海金属, 2013, 35(4): 47-52. Liu Rendong, Guo Jinyu, Wang Fu. Research and development progress of high-strength automobile steels in Ansteel[J]. Shanghai Metals, 2013, 35(4): 47-52. [6] 张 梅, 陈杨飞, 许 清, 等. 980 MPa级先进高强钢的发展[J]. 上海金属, 2024, 46(2): 1-9. Zhang Mei, Chen Yangfei, Xu Qing, et al. Development of 980 MPa grade advanced high-strength steels[J]. Shanghai Metals, 2024, 46(2): 1-9. [7] Mehranpour M S, Sohrabi M J, Jalali A, et al. Coupling different strengthening mechanisms with transformation-induced plasticity(TRIP) effect in advanced high-entropy alloys: A comprehensive review[J]. Materials Science and Engineering A, 2025, 926: 147914. [8] 张钟涛, 赵 刚, 肖 欢, 等. 淬火温度和配分温度对CSP生产的Q&P980钢组织及性能的影响[J]. 热加工工艺, 2024, 53(14): 93-98. Zhang Zhongtao, Zhao Gang, Xiao Huan, et al. Effects of quenching temperature and partitioning temperature on microstructure and properties of Q&P980 steel produced by CSP[J]. Hot Working Technology, 2024, 53(14): 93-98. [9] Zhang S, Zhou W, Zhou S, et al. Investigation of microstructural evolution and crack extension in a quenching and partitioning (Q&P) steel at different strain rates[J]. Journal of Materials Research and Technology, 2023, 24: 2385-2402. [10] 郭呈宇, 张 哲, 张 弛, 等. Q&P工艺对1000 MPa级高强钢组织与性能的影响[J]. 金属热处理, 2024, 49(8): 67-73. Guo Chengyu, Zhang Zhe, Zhang Chi, et al. Effects of Q&P process on microstructure and properties of 1000 MPa grade high-strength steel[J]. Heat Treatment of Metals, 2024, 49(8): 67-73. [11] 杨 杰, 王德成, 李贤君, 等. Q&P工艺对38MnB5Nb超高强钢力学性能与微观组织的影响[J]. 金属热处理, 2024, 49(2): 77-83. Yang Jie, Wang Decheng, Li Xianjun, et al. Effects of Q&P process on mechanical properties and microstructure of 38MnB5Nb ultra-high-strength steel[J]. Heat Treatment of Metals, 2024, 49(2): 77-83. [12] 刘 曼, 周明星, 陈振业, 等. 中碳高硅Q&P钢马氏体相变动力学[J]. 钢铁, 2025, 60(3): 117-124. Liu Man, Zhou Mingxing, Chen Zhenye, et al. Martensitic transformation kinetics of medium-carbon high-silicon Q&P steel[J]. Iron and Steel, 2025, 60(3): 117-124. [13] 陈立伟, 颜景润, 倪笑宇, 等. TRIP800钢板Q&P处理后的疲劳性能研究[J]. 热加工工艺, 2017, 46(12): 205-207, 211. Chen Liwei, Yan Jingrun, Ni Xiaoyu, et al. Research on fatigue properties of TRIP800 steel sheets after Q&P treatment[J]. Hot Working Technology, 2017, 46(12): 205-207, 211. [14] 邹宗园, 宋 宇, 池艳阳, 等. 考虑应力比的TRIP双相钢疲劳裂纹扩展试验及有限元模拟[J]. 钢铁, 2025, 60(4): 114-124. Zou Zongyuan, Song Yu, Chi Yanyang, et al. Fatigue crack propagation test and finite element simulation of TRIP dual-phase steel considering stress ratio[J]. Iron and Steel, 2025, 60(4): 114-124. [15] Li Y, Zhang Y, Long X, et al. Effect of undercooled austenite cooling rate on the low cycle fatigue properties of an austempering bainitic steel[J]. International Journal of Fatigue, 2025, 193: 108809. [16] Shen Y, Moghadam S M, Sadeghi F, et al. Effect of retained austenite-compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel[J]. International Journal of Fatigue, 2015, 75: 135-144. [17] 孙珊珊. 卸载循环对Q&P980钢微观组织影响的研究[D]. 长春: 吉林大学, 2016. |