[1] 顾 超. 高品质轴承钢疲劳寿命预测模型及夹杂物影响规律研究[D]. 北京: 北京科技大学, 2019. Gu Chao. Microstructure fatigue life prediction model based on the effect of inclusions in bearing steel[D]. Beijing: University of Science and Technology Beijing, 2019. [2] Taktak S, Ulker S, Gunes I J S, et al. High temperature wear and friction properties of duplex surface treated bearing steels[J]. Surface and Coating Technology, 2008, 202: 3367-3377. [3] 薛正堂. 滚动轴承失效形式与性能特性分析及滚道表面形貌表征研究[D]. 合肥: 合肥工业大学, 2022. Xue Zhengtang. Analysis of failure mode and performance characteristics of rolling bearing and characterization of raceway surface topography[D]. Hefei: Hefei University of Technology, 2022. [4] Karami M B, Odaba D. A simple approach to calculation of the sliding wear coefficient for medium carbon steels[J]. Wear, 1991, 151(1): 23-34. [5] 易 诚. 热处理对重载轴承材料耐磨性能的影响研究[D]. 成都: 西南石油大学, 2017. Yi Cheng. Study on the effect of heat treatment on the wear resistance of heavy-duty bearing materials[D]. Chengdu: Southwest Petroleum University, 2017. [6] 王家玮. 高性能渗氮轴承钢微观组织和磨损性能研究[D]. 西安: 西安建筑科技大学, 2013. Wang Jiawei. The research on the microstructure and anti-wear performance of high performance nitriding bearing steel[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. [7] 郭元元. 奥氏体不锈钢低温离子渗氮及碳氮共渗工艺研究[D]. 沈阳: 东北大学, 2008. Guo Yuanyuan. Study on the technology of plasma nitriding and plasma nitrocarburizing of austenitic stainless steel in the low temperature[D]. Shenyang: Northeastern University, 2008. [8] 贺甜甜, 邵若男, 刘 建, 等. 不同载荷下GCr15钢的滑动摩擦磨损性能[J]. 材料热处理学报, 2020, 41(7): 105-110. He Tiantian, Shao Ruonan, Liu Jian, et al. Sliding friction and wear properties of GCr15 steel under different loads[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 105-110. [9] 吴承建, 陈国良, 强文江. 金属材料学[M]. 北京: 冶金工业出版社, 2010: 104-105. [10] 单琼飞, 王 鑫, 薛文方, 等. GCr15钢碳氮共渗与马氏体淬火组织及性能试验对比研究[J]. 哈尔滨轴承, 2021, 42(2): 28-31. Shan Qiongfei, Wang Xin, Xue Wenfang, et al. Comparative study on microstructure and properties of GCr15 steel after carbonitriding and martensite quenching[J]. Journal of Harbin Bearing, 2021, 42(2): 28-31. [11] 蒋港辉, 李淑欣, 蒲吉斌, 等. 马氏体轴承钢碳氮共渗滚动接触疲劳失效机理[J]. 中国表面工程, 2022, 35(2): 12-23. Jiang Ganghui, Li Shuxin, Pu Jibin, et al. Rolling contact fatigue failure mechanism of martensitic bearing steel after carbonitriding[J]. China Surface Engineering, 2022, 35(2): 12-23. [12] 尹业平, 雷 旻. GDL-1钢渗碳后液体软氮化工艺的初步探索[J]. 湖南科技大学学报(自然科学版), 2010, 25(2): 110-113. Yin Yeping, Lei Min. Investigation of the sulfurizing soft- nitriding process after carburizing of the steel GDL-1[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2010, 25(2): 110-113. [13] 张建国, 丛培武, 王京晖, 等. 真空碳氮共渗新技术及其应用[J]. 金属热处理, 2006, 31(3): 59-61. Zhang Jianguo, Cong Peiwu, Wang Jinghui, et al. New technology and appliance of vacuum carbonitriding[J]. Heat Treatment of Metals, 2006, 31(3): 59-61. [14] 刘永飞, 高啸天, 武占学, 等. 高温回火对20Cr2Ni4A钢渗碳层中残留奥氏体的影响[J]. 金属热处理, 2013, 38(1): 77-79. Liu Yongfei, Gao Xiaotian, Wu Zhanxue, et al. Influence of high temperature tempering on retained austenite in carburized 20Cr2Ni4A steel[J]. Heat Treatment of Metals, 2013, 38(1): 77-79. |