[1] 韩 顺, 厉 勇, 王春旭, 等. AF1410钢的旋转弯曲疲劳破坏行为[J]. 钢铁, 2013, 48(3): 82-85. Han Shun, Li Yong, Wang Chunxu, et. al. Behavior of rotating-bending fatigue failure of AF1410 steel[J]. Iron and Steel, 2013, 48(3): 82-85. [2] 汤 伟, 袁武华, 朱志飞. 超高强度钢AF1410的高温变形本构方程及热加工图[J]. 热加工工艺, 2017, 46(23): 129-133. Tang Wei, Yuan Wuhua, Zhu Zhifei. High temperature deformation constitutive equation and hot processing map of ultra-high strength steel AF1410[J]. Hot Working Technology, 2017, 46(23): 129-133. [3] 刘金刚, 杨建花, 王高升, 等. TC4钛合金表面激光熔覆WC增强镍基复合涂层的组织及耐磨性[J]. 稀有金属材料与工程, 2022, 51(8): 2907-2914. Liu Jingang, Yang Jianhua, Wang Gaosheng, et al. Microstructure and wear resistance of laser cladding WC reinforced Ni based composite coating on TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2022, 51(8): 2907-2914. [4] 曹琛婕, 王彦芳, 张存修, 等. 激光熔覆FeCrNiCoMoCuBSi高熵合金涂层的腐蚀磨损性能[J]. 稀有金属材料与工程, 2023, 52(4): 1439-1446. Cao Chenjie, Wang Yanfang, Zhang Cunxiu, et al. Tribocorrosion behavior of laser cladding FeCrNiCoMoCuBSi high entropy alloy coating[J]. Rare Metal Materials and Engineering, 2023, 52(4): 1439-1446. [5] 张宏亮, 王明欣, 张京兵, 等. TiC含量对AlCoCrFeNi高熵合金熔覆层组织与耐磨性的影响[J]. 金属热处理, 2024, 49(9): 275-279. Zhang Hongliang, Wang Mingxin, Zhang Jingbing, et al. Effect of TiC content on microstructure and wear resistance of AlCoCrFeNi high-entropy alloy clad layer[J]. Heat Treatment of Metals, 2024, 49(9): 275-279. [6] 李 倩, 陈发强, 王 茜, 等. 激光熔覆WC增强Ni基复合涂层的研究进展[J]. 表面技术, 2022, 51(2): 129-143. Li Qian, Chen Faqiang, Wang Qian, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating[J]. Surface Technology, 2022, 51(2): 129-143. [7] Kilicay Koray, Buytoz Soner, Ulutan Mustafa. Microstructural and tribological properties of induction cladded NiCrBSi/WC composite coatings[J]. Surface and Coatings Technology, 2020, 397: 125974. [8] 梁伟印, 梁国星, 董黎君, 等. YG8硬质合金表面激光熔覆WC/TiC/Co涂层的组织及性能[J]. 金属热处理, 2021, 46(12): 168-174. Liang Weiyin, Liang Guoxing, Dong Lijun, et al. Microstructure and properties of laser clad WC/TiC/Co coating on YG8 cemented carbide surface[J]. Heat Treatment of Metals, 2021, 46(12): 168-174. [9] 魏新龙, 付二广, 戴凡昌, 等. 激光熔覆涂层增韧改性方法的研究进展[J]. 金属热处理, 2023, 48(6): 237-248. Wei Xinlong, Fu Erguang, Dai Fanchang, et al. Research progress on toughening modification of laser clad coating[J]. Heat Treatment of Metals, 2023, 48(6): 237-248. [10] 孙 宁, 方 艳, 张家奇, 等. WC-12Co添加量对激光熔覆Inconel 625基复合材料微观组织和耐磨性能的影响[J]. 中国激光, 2021, 48(6): 93-102. Sun Ning, Fang Yan, Zhang Jiaqi, et al. Effect of WC-12Co addition microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J]. Chinese Journal of Lasers, 2021, 48(6): 93-102. [11] 杨 成, 叶 兵, 马 越. 等. 航空超高强度钢表面防护技术的研究进展[J]. 材料保护, 2024, 57(10): 87-101. Yang Cheng, Ye Bing, Ma Yue, et al. Progress in the surface protection technology of aerospace ultra-high strength steel[J]. Materials Protection, 2024, 57(10): 87-101. [12] 廉学魁, 厉 勇, 刘宪明, 等. 二次硬化超高强度钢AF1410奥氏体晶粒长大行为[J]. 特殊钢, 2010, 31(5): 61-63. Lian Xuekui, Li Yong, Liu Xianming, et al. Growth behavior of austenite grain of secondary hardening ultra-high strength steel AF1410[J]. Special Steel, 2010, 31(5): 61-63. [13] 陈书楠, 娄丽艳, 纪 纲, 等. 超高速与常规激光熔覆Fe基涂层微观组织及性能研究[J]. 表面技术, 2022, 51(12): 358-370. Chen Shunan, Lou Liyan, Ji Gang, et al. Microstructure and properties of Fe-based alloy prepared by ultra-high speed laser cladding and conventional laser cladding[J]. Surface Technology, 2022, 51(12): 358-370. [14] Bao Yefeng, Guo Linpeng, Zhong Chonghui, et al. Effects of WC on the cavitation erosion resistance of FeCoCrNiB0.2 high entropy alloy coating prepared by laser cladding[J]. Materials Today Communications, 2021, 26: 102154. [15] Knott J F. Micro-mechanisms of fracture and the fracture toughness of engineering alloys[J]. Advances in Research on the Strength and Fracture of Materials: Pergamon, 1978, 26: 61-92. [16] Ren Jinyi, Li Changsheng, Han Yahui, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel[J]. Materials Science and Engineering A, 2021, 812: 141080. |