[1] Holtham Noah, Brooks Nicholas, Hackel Lloyd, et al. Investigation of high-temperature recovery and recrystallization behavior in a single crystal Ni-based superalloy treated with shot peening and laser peening[J]. Metals and Materials International, 2025, 31: 1793-1804. [2] Porter David, Easterling Kenneth, Sherif Mohamed. Phase Transformations in Metals and Alloys[M]. Boca Raton: CRC Press, 2021: 32-57. [3] Bogachev Ivan, Kevin Knowles, Grant Gibson. High temperature behavior of a mechanically surface hardened single crystal nickel-based superalloy[J]. Materialia, 2022, 23: 101438. [4] Liu Delin, Li Jiaping, Jin Xiaochao, et al. Effect of coating pretreatment on surface recrystallization of DD6 single crystal[J]. Materials, 2022, 15(19): 7004. [5] 余竹焕, 刘 林. C对单晶高温合金持久性能的影响[J]. 金属学报, 2014, 50(7): 854-862. Yu Zhuhuan, Liu Lin, Effect of C on the rupture properties of single crystal superalloys[J]. Acta Metallurgica Sinica, 2014, 50(7): 854-862. [6] Burgel R, Portella P D, Preuhs J. Recrystallization in single crystals of nickel base superalloys[J]. Superalloys, 2000, 5: 229-238. [7] Mohammad Reza Zamani, Hamed Mirzadeh, Mehdi Malekan, et al. Grain growth in high-entropy alloys(HEAs): A review[J]. High Entropy Alloys and Materials, 2022, 1(1): 25-59. [8] 徐静辉, 李龙飞, 刘心刚, 等. 热力耦合对一种第四代镍基单晶高温合金1100 ℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214. Xu Jinghui, Li Longfei, Liu Xingang, et al. Thermal-stress coupling effect on microstructure evolution of a fourth-generation nickel-based single-crystal superalloy at 1100 ℃[J]. Acta Metallurgica Sinica, 2021, 57(2): 205-214. [9] Li Zhiming. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior[J]. Acta Materialia, 2019, 164: 400-412.[10] Gai Yongchao, Zhang Rui, Zhou Zijian, et al. Effect of C content on microstructure and hot deformation behavior of a Ni-based superalloy[J]. Journal of Alloys and Compounds, 2023, 965: 171453. [11] Du Lifei, Yang Shaomei, Zhang Peng, et al. Pinning effect of different shape second-phase particles on grain growth in polycrystalline: Numerical and analytical investigations[J]. Composite Interfaces, 2018, 25(4): 357-368. [12] Zurob Hatem, Brechet Yves, Purdy Gary. A model for the competition of precipitation and recrystallization in deformed austenite[J]. Acta Materialia, 2001, 49(20): 4183-4190. [13] Sangid Michael, Sehitoglu Huseyin, Maier Hans, et al. Grain boundary characterization and energetics of superalloys[J]. Materials Science and Engineering A, 2010, 527(26): 7115-7125. [14] Mallick Ashis. Effect of second phase mobile particles on polycrystalline grain growth: A phase-field approach[J]. Computational Materials Science, 2013, 67: 27-34. [15] Wang Haoran, Zhang Zhiyuan, Zhai Ruixue, et al. New method to develop high temperature constitutive model of metal based on the Arrhenius-type model[J]. Materials Today Communications, 2020, 24: 101000. |