[1] Cao Puli, Li Chengbo, Zhu Daibo, et al. Effect of hot deformation on quenching sensitivity and heterogeneous precipitation behavior of 7150 aluminum alloy[J]. Journal of Materials Science, 2023, 58(42): 16550-16564. [2] Jiang Haitao, Xing Hui, Xu Zihan, et al. Effect of pre-aging and precipitation behavior on mechanical properties of 7055 aluminum alloy processed by hot-forming quenching[J]. Materials Characterization, 2023, 198: 112729. [3] Ranjan J S, Aparna T, Sumeet M. Low temperature interrupted quenching improves formability without compromising natural ageing stability and paint-bake strength of an Al-Mg-Si alloy[J]. Materials Science and Engineering A, 2023, 880: 145320. [4] Birol Y, Gokcil E, Guvenc M A, et al. Processing of high strength EN AW 6082 forgings without a solution heat treatment[J]. Materials Science and Engineering A, 2016, 674: 25-32. [5] Birol Y. Effect of extrusion press exit temperature and chromium on grain structure of EN AW 6082 alloy forgings[J]. Materials Science and Technology, 2015, 31(2): 207-211. [6] 张 劲, 蒋 震, 虞大联, 等. 6082铝合金锻造组织不均匀性及其对锻件性能的影响[J]. 锻压技术, 2020, 45(9): 8-15. Zhang Jin, Jiang Zhen, Yu Dalian, et al. Forging microstructure inhomogeneity of 6082 aluminum alloy and its effect on properties of forgings[J]. Forging & Stamping Technology, 2020, 45(9): 8-15. [7] Zhao Ning, Ma Huijuan, Sun Qian, et al. Microstructural evolutions and mechanical properties of 6082 aluminum alloy part produced by a solution-forging integrated process[J]. Journal of Materials Processing Technology, 2022, 308: 117715. [8] Wang Xiaowei, Zhao Guoqun, Sun Lu, et al. Investigation on hot deformation behavior and quenching precipitation mechanism of 2195 Al-Li alloy[J]. Materials and Design, 2023, 234: 112366. [9] Li Hongying, Zeng Cuiting, Han Maosheng, et al. Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 38-45. [10] Shang Baochuan, Yin Zhimin, Wang Guangrong, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy[J]. Materials and Design, 2011, 32(7): 3818-3822. [11] Xu Congchang, He Hong, Xue Zhigang, et al. A detailed investigation on the grain structure evolution of AA7005 aluminum alloy during hot deformation[J]. Materials Characterization, 2021, 171: 110801. [12] Zhang Jingjing, Yi Youping, Huang Shiquan, et al. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation[J]. Materials Science and Engineering A, 2021, 804: 140650. [13] Chamanfar A, Alamoudi M T, Nanninga N E, et al. Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099)[J]. Materials Science and Engineering A, 2019, 743: 684-696. [14] 宋丰轩, 莫宇飞, 刘世通. 热挤压工艺对7N01铝合金型材组织和疲劳行为的影响[J]. 金属热处理, 2024, 49(10): 105-110. Song Fengxuan, Mo Yufei, Liu Shitong. Effect of hot extrusion process on microstructure and fatigue behavior of 7N01 aluminum alloy profiles[J]. Heat Treatment of Metals, 2024, 49(10): 105-110. [15] 牛晓玲. 金属拉伸不均匀塑性变形行为的定量分析[D]. 长春: 吉林大学, 2017. [16] Zhan L H, Lin J G, Dean T A, et al. Experimental studies and constitutive modelling of the hardening of aluminum alloy 7055 under creep age forming conditions[J]. International Journal of Mechanical Sciences, 2011, 53(8): 595-605. [17] Gong Xiangpeng, Cheng Xu, Zhang Daoyang, et al. Precipitation behaviors and the related strengthening mechanism in 2219 Al alloy fabricated by wire arc additive manufacturing[J]. Journal of Alloys and Compounds, 2024, 1002: 175243-175243. [18] Zhang Q L, Luan X, Dhawan S, et al. Development of the post-form strength prediction model for a high-strength 6xxx aluminum alloy with pre-existing precipitates and residual dislocations[J]. International Journal of Plasticity, 2019, 119: 230-248. [19] Lan Jian, Shen Xuejun, Liu Juan, et al. Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging[J]. Materials Science and Engineering A, 2019, 745: 517-535. [20] Shercliff H R, Ashby M F. A process model for age hardening of aluminum alloys-I. The model[J]. Acta Metallurgica et Materialia, 1990, 38(10): 1789-1802. [21] Teichmann K, Marioara C D, Andersen S J, et al. The effect of preaging deformation on the precipitation behavior of an Al-Mg-Si alloy[J]. Metallurgical and Materials Transactions A, 2012, 43(11): 4006-4014. [22] Cabibbo M. Microstructure strengthening mechanisms in an Al-Mg-Si-Sc-Zr equal channel angular pressed aluminum alloy[J]. Applied Surface Science, 2013, 281: 38-43. [23] Hall E O. Yeild Point Phenomena in Metals and Alloys[M]. Boston: Springer, 1970. [24] Kumar N, Owolabi G M, Jayaganthan R. Al 6082 alloy strengthening through low strain multi-axial forging[J]. Materials Characterization, 2019, 155: 109761. [25] Zhang Wenpei, Li Huanuan, Hu Zhili, et al. Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process[J]. Materials Science and Engineering A, 2020, 792: 139749. |