[1]柳学胜, 朱瑞金, 冼 进. 特薄壁奥氏体不锈钢管的生产工艺及缺陷分析[J]. 钢管, 1997(2): 5-8. Liu Xuesheng, Zhu Ruijin, Xian Jin. Manufacture process and defect analysis of austenitic stainless steel extra-light wall tubes[J]. Steel Pipe, 1997(2): 5-8. [2]Huang Z, Guo Z X, Liu L, et al. Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel[J]. Surface and Coatings Technology, 2021, 405, 126689. [3]凤 仪. 金属材料学[M]. 北京: 国防工业出版社, 2009. [4]曾正明. 实用钢铁材料手册[M]. 北京: 机械工业出版社, 2015. [5]李 朋, 潘 邻, 张良界, 等. 奥氏体不锈钢渗碳层的组织及耐蚀强化性能研究[J]. 表面技术, 2013, 42(4): 69-71, 86. Li Peng, Pan Lin, Zhang Liangjie, et al. Study on structure and corrosion resistance analysis of carburizing organization of austenitic stainless steel[J]. Surface Technology, 2013, 42(4): 69-71, 86. [6]Dymond P. Kolsterising Bodycote. Improving austenitic stainless steel[C]//Narendra B Dahotre. Proceeding of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress. Indianapolis Indiana USA, 2003: 244-248. [7]Rey O, Jacquot P. Kolsterising: Hardening of austenitic stainless steel[J]. Surface Engineering, 2002, 18(6): 412-414. [8]李艳秋, 韩云杰. Kolsterising-不损失耐蚀性的奥氏体和双相不锈钢的表面硬化[J]. 热处理技术与装备, 2003, 23(6): 28-30. [9]Cao Y, Ernst F, Michal G M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia, 2003, 51(14): 4171-4181. [10]Ernst F, Avishai A, Kahn H, et al. Enhanced carbon diffusion in austenitic stainless steel carburized at low temperature[J]. Metallurgical and Materials Transactions A, 2009, 40(8): 1768-1780. [11]Heuer A H, Ernst F, Kahn H, et al. Interstitial defects in 316L austenitic stainless steel containing “colossal” carbon concentrations: An internal friction study[J]. Scripta Materialia, 2007, 56(12): 1067-1070. [12]Agarwal N, Kahn H, Avishai A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization[J]. Acta Materialia, 2007, 55(16): 5572-5580. [13]Tanaka Susumu, Ueda Koji, Mitamura Nobuaki, et al. The development of an austenitic stainless steel bearing with high corrosion resistance and high nonmagnetic property[J]. Journal of ASTM International, 2006, 3(9): 207-214. [14]Tokaji Keiro, Kohyama Kei, Akita Masayuki. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing[J]. International Journal of Fatigue, 2004, 26(5): 543-551. [15]Akita Masayuki, Tokaji Keiro. Effect of carburizing on notch fatigue behaviour in AISI 316 austenitic stainless steel[J]. Surface and Coatings Technology, 2006, 200(20): 6073-6078. [16]潘 邻, 张良界, 李 鹏, 等. 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法: 102828145A[P]. 2012-12-19. [17]高 峰, 巩建鸣, 姜 勇, 等. 316L奥氏体不锈钢低温气体渗碳后的表面特性[J]. 金属热处理, 2014, 39(12): 102-106. Gao Feng, Gong Jianming, Jiang Yong, et al. Surface performance of 316L austenite stainless steel after low temperature gas carburizing[J]. Heat Treatment of Metals, 2014, 39(12): 102-106. [18]杨广义, 王永雷, 周梦飞, 等. 奥氏体不锈钢低温离子-气体复合硬化处理工艺[J]. 金属热处理, 2016, 41(10): 133-136. Yang Guangyi, Wang Yonglei, Zhou Mengfei, et al. Ion-gas surface hardening process of austenitic stainless steel at low temperature[J]. Heat Treatment of Metals, 2016, 41(10): 133-136. [19]朱云峰, 潘 邻, 张良界, 等. 不损害耐蚀性的奥氏体不锈钢渗碳强化技术研究进展[J]. 金属热处理, 2012, 37(7): 1-6. Zhu Yunfeng, Pan Lin, Zhang Liangjie, et al. Research progress of carburizing hardening technology for austenitic stainless steel without decreasing corrosion resistance[J]. Heat Treatment of Metals, 2012, 37(7): 1-6. [20]王一亨. 气体渗碳动力学参数原位表征的模型及其应用[D]. 哈尔滨: 哈尔滨工业大学, 2022. Wang Yiheng. A model for in-situ characterization of kinetic parameters for gas carburizing and its application[D]. Harbin: Harbin Institute of Technology, 2022. [21]王艳飞, 巩建鸣, 荣冬松, 等. 不锈钢低温气体渗碳的C浓度与扩散应力测量与计算[J]. 金属学报, 2014, 50(4): 409-414. Wang Yanfei, Gong Jianming, Rong Dongsong, et al. Measurement and calculation of carbon concentration and diffusion-induced stress in stainless steel after low temperature gas carburizing[J]. Acta Metallurgica Sinica, 2014, 50(4): 409-414. [22]汪轩义, 吴荫顺, 张 琳, 等. 不锈钢钝化膜研究进展[J]. 材料导报, 1999, (3): 13-14, 33. Wang Xuanyi, Wu Yinshun, Zhang Lin, et al. The research progress of passive film on stainless steel[J]. Materials Reports, 1999, (3): 13-14, 33. [23]姜 勇, 李 洋, 陈野风, 等. 奥氏体不锈钢低温表面渗碳技术的研究进展[J]. 机械工程材料, 2018, 42(10): 1-7. Jiang Yong, Li Yang, Cheng Yefeng, et al. Research progress on low temperature surface carburization technique of austenite stainless steel[J]. Materials for Mechanical Engineering, 2018, 42(10): 1-7. [24]Borgioli F. The “Expanded” phases in the low-temperature treated stainless steels: A review[J]. Metals, 2022, 12(2): 331. [25]Werner K V, Che H L, Lei M K, et al. Low temperature carburizing of stainless steels and the development of carbon expanded austenite*[J]. HTM Journal of Heat Treatment and Materials, 2022, 77(1): 3-15. [26]Kin H Lo, Zeng Da. Recently patented gaseous car-burising and nitriding techniques for stainless steels and a review of other surface enhancing techniques[J]. Recent Patents on Mechanical Engineering, 2010, 3(1): 11-17. [27]Ma F, Pan L, Zhang L J, et al. Structure and wear resistance of 0Cr17Ni14Mo2 austenitic stainless steel after low temperature gas carburising[J]. Materials Research Innovations, 2014, 18(S2): 1023-1027. [28]李 朋, 潘 邻, 张良界, 等. 奥氏体不锈钢低温气体渗碳的组织性能[J]. 中国表面工程, 2013, 26(2): 97-101. Li Peng, Pan Lin, Zhang Liangjie, et al. Structure and properties of anti-corrosion carburized layers in austenitic stainless steels[J]. China Surface Engineering, 2013, 26(2): 97-101. [29]姜 勇, 李 洋, 周 阳, 等. 奥氏体不锈钢双极板的低温超饱和气体渗碳表面改性[J]. 上海交通大学学报, 2019, 53(2): 247-252. Jiang Yong, Li Yang, Zhou Yang, et al. Surface modification of austenitic stainless steel bipolar plates by low[J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 247-252. [30]Sun L, Li Y D, Cao C, et al. Effect of low-temperature plasma carburization on fretting wear behavior of AISI 316L stainless steel[J]. Coatings, 2024, 14(2): 158. [31]Giulio M, Stefan K, Lars N, et al. Low-temperature carburized high-alloyed austenitic stainless steels in PEMFC cathodic environment[J]. Surfaces and Interfaces, 2021, 24: 101093. [32]Liu Z, Zhang S, Wang S H, et al. Redistribution of carbon and residual stress in low-temperature gaseous carburized austenitic stainless steel during thermal and mechanical loading[J]. Surface and Coatings Technology, 2021, 426: 127809. [33]Feng Y, Duan H, Zhao Z X, et al, Anisotropic response of additively manufactured 316L stainless steel towards low-temperature gaseous carburization[J]. Surface and Coatings Technology, 2023, 470: 129874. [34]周梦飞, 赵 程. AISI 316L奥氏体不锈钢低温离子-气体复合渗碳温度对渗碳层的影响[J]. 金属热处理, 2017, 42(6): 75-79. Zhou Mengfei, Zhao Cheng. Influence of low temperature ion-gas carburizing temperature on carburized layer of AISI 316L austenitic stainless steel[J]. Heat Treatment of Metals, 2017, 42(6): 75-79. [35]彭恩高, 周阳宁, 李 朋. AISI304和AISI316奥氏体不锈钢气体渗碳腐蚀磨损性能分析. 船电技术, 2017, 37(4): 26-30. Peng Engao, Zhou Yangning, Li Peng. Corrosion and wear properties analysis of gas carburizing for AISI304 & AISI316 austenitic stainless steel[J]. Marine Electric and Electronic Engineering, 2017, 37(4): 26-30. [36]Juri A Z, Azmi F, Basak A K, et al. Tribological and corrosion behaviour of medical grade 316LVM steel by low temperature hybrid gaseous nitriding and carburizing[J]. Tribology International, 2023, 190: 109026. [37]Buhagiar J, Dong H. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel[J]. Journal of Materials Science. Materials in Medicine, 2012, 23(2): 271-281. [38]姜 勇, 李 洋, 周 阳, 等. 低温气体渗碳对形变304L不锈钢抗点蚀性能的影响[J]. 腐蚀与防护, 2019, 40(2): 87-91. Jiang Yong, Li Yang, Zhou Yang, et al. Effect of low temperature gaseous carburization on pitting corrosion resistance of deformed 304L stainless steel[J]. Corrosion and Protection, 2019, 40(2): 87-91. [39]Thaiwatthanas, Li X Y, Dong H, et al. Runner-up corrosion wear behaviour of low temperature plasma alloyed 316 austenitic stainless steel[J]. Surface Engineering, 2003, 19(3): 211-216. [40]Heuer A, Kahn H, Ernst F, et al. Enhanced corrosion resistance of interstitially hardened stainless steel: Implications of a critical passive layer thickness for breakdown[J]. Acta Materialia, 2011, 60(2): 716-725. [41]彭亚伟, 陈超鸣, 李宣逸, 等. 低温气体渗碳对304奥氏体不锈钢应力腐蚀开裂行为的影响[C]//第九届全国压力容器学术会议论文集. 2017: 382-388. [42]莫玉梅, 杨 斌. 航空零件0Cr18Ni10Ti奥氏体不锈钢渗碳层的耐磨性研究[J]. 铸造技术, 2017, 38(2): 342-344. Mo Yumei, Yang Bin. Study of wear resistance of 0Cr18Ni10Ti austenitic stainless steel[J]. Foundry Technology, 2017, 38(2): 342-344. [43]马 飞, 潘 邻, 张良界, 等. 316奥氏体不锈钢低温气体渗碳层组织与强化性能[J]. 材料热处理学报, 2015, 36(6): 216-221. Ma Fei, Pan Lin, Zhang Liangjie, et al. Microstructure and strengthening of low temperature carburizing layer for 316 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(6): 216-221. [44]Sun Y, Bailey R. Comparison of wear performance of low temperature nitrided and carburized 316L stainless steel under dry sliding and corrosive-wear conditions[J]. Journal of Materials Engineering and Performance, 2022, 32(3): 1238-1247. [45]姜 勇, 李 洋, 张显程, 等. 低温超饱和气体渗碳对316L奥氏体不锈钢力学性能的影响[J]. 中国表面工程, 2018, 31(1): 32-38. Jiang Yong, Li Yang, Zhang Xiancheng, et al. Effects of low temperature supersaturation gaseous carburization on mechanical properties of 316L austenitic stainless steel[J]. China Surface Engineering, 2018, 31(1): 32-38. [46]Jiang Y, Li Y, Peng Y W, et al. Mechanical properties and cracking behavior of low-temperature gaseous carburized austenitic stainless steel[J]. Surface and Coatings Technology, 2020, 403, 126343. [47]Jiang Y, Wu Q, Li Y, et al. Mechanical properties of low-temperature gaseous carburizated layer in 316L stainless steel based on nano-indentation and four-point bending tests[J]. Surface and Coatings Technology, 2020, 387: 125501. [48]彭亚伟, 刘 喆, 巩建鸣. 低温气体渗碳表面强化的316L奥氏体不锈钢疲劳特性及残余应力稳定性研究[C]//第十届全国压力容器学术会议文集. 2021: 108-115. [49]Peng Y, Liu Z, Chen C M, et al. Effect of low-temperature surface hardening by carburization on the fatigue behavior of AISI 316L austenitic stainless steel[J]. Materials Science and Engineering A, 2020, 769: 138524. [50]Peng Y, Zhang S, Liu Z, et al. Notch fatigue behaviour of low-temperature gaseous carburised 316L austenitic stainless steel[J]. Materials Science and Technology, 2020, 36(10): 1076-1082. [51]Liu Z, Zhang S, Wang S H, et al. On the fatigue behavior of low-temperature gaseous carburized 316L austenitic stainless steel: Experimental analysis and predictive approach[J]. Materials Science and Engineering A, 2020, 793: 139651. [52]Liu Z, Wang S H, Feng Y J, et al. Exploration on the fatigue behavior of low-temperature carburized 316L austenitic stainless steel at elevated temperature[J]. Materials Science and Engineering A, 2022, 850: 143562. [53]Liu Z, Wang S H, Zhang S, et al. Deformation response of gradient low-temperature gaseous carburized case in austenitic stainless steel during cyclic nanoindentation[J]. Materials Today: Communications, 2021, 28: 102714. [54]梁 涛, 姜 勇, 冯雅健, 等. 低温气体渗碳对304L奥氏体不锈钢抗氢性能的影响[J]. 中国表面工程, 2018, 31(4): 74-80. Liang Tao, Jiang Yong, Feng Yajian, et al. Effects of low temperature gaseous carburization on hydrogen embrittlement resistance of 304L austenitic stainless steel[J]. China Surface Engineering, 2018, 31(4): 74-80. [55]Jiang Y, Wu Q, Wang Y F, et al. Suppression of hydrogen absorption into 304L austenitic stainless steel by surface low temperature gas carburizing treatment[J]. International Journal of Hydrogen Energy, 2019, 44(43): 24054-24064. [56]Li Y, Li W, Zhu X, et al. Mechanism of improved hydrogen embrittlement resistance of low-temperature plasma carburised stainless steel[J]. Surface Engineering, 2018, 34(3): 189-192. [57]孙 宁, 姜 勇, 陈金燕, 等. 316L奥氏体不锈钢表面低温气体渗碳层的热稳定性能[J]. 机械工程材料, 2019, 43(3): 7-12, 66. Sun Ning, Jiang Yong, Chen Jinyan, et, al. Thermal stability of low temperature gas carburized layer on surface of 316L austenitic stainless steel[J]. Materials for Mechanical Engineering, 2019, 43(3): 7-12, 66. [58]Jiang Y, Sun N, Peng Y W, et al. Stability of low-temperature-gaseous-carburization layer in AISI316L stainless steel at high temperature[J]. Surfaces and Interfaces, 2020, 23: 100898. [59]Philipp S, Ulrich K, Paul G, et al. Investigation of alloy-dependent occurrence of ferromagnetism in carbon-expanded austenitic steel after low-temperature surface hardening[J]. Steel Research International, 2021, 92(12): 2100272. |