[1]Chen H X, Gong Y Q, Baosiriguleng, et al. Fuzzy FMECA for CNC machine tool spindle system[J]. Materials Science and Engineering, 2021, 1043(2): 022037. [2]尹云洋, 方 芳, 严 翔, 等. 环保石墨易切削钢的组织及性能[J]. 材料热处理学报, 2013, 34(4): 133-137. Yin Yunyang, Fang Fang, Yan Xiang, et al. Microstructure and properties of environmental graphitized free-cutting steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(4): 133-137. [3]闫卫兵, 邢 薇. 环保型易切削钢X1215的开发[J]. 金属世界, 2013(1): 61-64. Yan Weibing, Xing Wei. Developments of environment-friendly X1215 free cutting steel[J]. Metal World, 2013(1): 61-64. [4]He K, Brown A, Brydson R, et al. An EFTEM study of the dissolution of cementite during the graphitisation annealing of a quenched medium carbon steel[J]. Journal of Physics: Conference Series, 2006, 26: 111-114. [5]Inam A, Brydson R, Edmonds D V. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel[J]. Materials Characterization, 2015, 106: 86-92. [6]Kim Y J, Park S H. Effect of initial microstructure on graphitization behavior of Fe-0.55C-2.3Si steel[J]. Journal of Materials Research and Technology, 2021, 15: 4529-4540. [7]Kim Y J, Bae S W, Kim S H, et al. Effects of B and Ti addition and heat treatment temperature on graphitization behavior of Fe-0.55C-2.3Si steel[J]. Journal of Materials Research and Technology, 2020, 9(5): 11189-11200. [8]Toshiyuki H, Akihiro M, Keniti A, et al. A newly developed unleaded free cutting steel which has both of high fatigue strength and excellent machinability using graphitization of carbon in the steel[J]. Material Japan, 2003, 42(2): 163-165. [9]Takashi I, Toshiyuki M. Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition[J]. JFE Technical Report, 2004(4): 74-80. [10]张永军, 李新鹏, 王九花, 等. 石墨化钢石墨化过程的金相分析及其动力学方程[J]. 工程科学学报, 2022, 44(2): 228-234. Zhang Yongjun, Li Xinpeng, Wang Jiuhua, et al. Metallographic analysis and kinetic equation of the graphitization process of graphitized steel[J]. Chinese Journal of Engineering, 2022, 44(2): 228-234. [11]王东梅, 赵磊城, 陈 林, 等. 淬火冷速对过共析轨钢中珠光体组织的影响[J]. 金属热处理, 2021, 46(3): 12-17. Wang Dongmei, Zhao Leicheng, Chen Lin, et al. Effect of quenching cooling rate on pearlite microstructure of hypereutectoid rail steel[J]. Heat Treatment of Metals, 2021, 46(3): 12-17. [12]韦轶华, 李 松, 白志玲, 等. 82B钢的微合金化-相变控制与生产实践[J]. 特殊钢, 2019, 40(6): 28-33. Wei Yihua, Li Song, Bai Zhiling, et al. Micro-alloying and phase transformation control of steel 82B and production practice[J]. Special Steel, 2019, 40(6): 28-33. [13]艾家和, 赵同春, 高惠菊, 等. 控轧控冷工艺参数对60Si2MnA线材中珠光体形态的影响[J]. 北京科技大学学报, 2002, 24(5): 503-506. Ai Jiahe, Zhao Tongchun, Gao Huiju, et al. Effect of controlled rolling and cooling process parameters on precipitated pearlite of 60Si2MnA spring steel wire rods[J]. Chinese Journal of Engineering, 2002, 24(5): 503-506. [14]贾志鑫, 衣海龙, 刘嵩韬, 等. 控轧控冷参数对含铌微合金钢组织的影响[J]. 机械工程材料, 2006, 30(9): 7-9. Jia Zhixin, Yi Hailong, Liu Songtao, et al. Effect of controlled rolling and cooling parameters on structure of niobium microalloyed steel[J]. Materials for Mechanical Engineering, 2006, 30(9): 7-9. [15]Neri M A, R Colás, Valtierra S. Effect of deformation on graphitization kinetics in high carbon steels[J]. Journal of Materials Processing Technology, 1998, 83(1-3): 142-150. [16]Foulds J R, Viswanathan R. Graphitization of steels in elevated-temperature service[J]. Journal of Materials Engineering and Performance, 2001, 10(4): 484-492. [17]肖桂枝, 李 鹤, 庞玉华, 等. 晶粒尺寸与碳化物组织细化对18Cr14Co12Mo4轴承钢性能的影响[J]. 锻压技术, 2024, 49(10): 1-7. Xiao Guizhi, Li He, Pang Yuhua, et al. Influence of grain size and carbide structure refinement on properties of 18Cr14Co12Mo4 bearing steel[J]. Forging & Stamping Technology, 2024, 49(10): 1-7. |