[1]周池楼, 何默涵, 郭 晋, 等. 高压氢环境奥氏体不锈钢焊件氢脆研究进展[J]. 化工进展, 2022, 41(2): 519-536. Zhou Chilou, He Mohan, Guo Jin, et al. Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 519-536. [2]程旺军, 崔栋栋, 孙耀宁, 等. 基于液氢储运的超低温不锈钢微观组织演变与力学性能研究进展[J]. 太阳能学报, 2024, 45(6): 117-124. [3]张慧云, 孟宪明, 郑留伟, 等. 敏化处理对不同状态304奥氏体不锈钢氢脆敏感性的影响[J]. 金属热处理, 2021, 46(8): 164-169. Zhang Huiyun, Meng Xianming, Zheng Liuwei, et al. Effect of sensitization on hydrogen embrittlement sensitivity of 304 austenitic stainless steel in different states[J]. Heat Treatment of Metals, 2021, 46(8): 164-169. [4]燕春光, 陈胜虎, 李雅平, 等. 氢对316H不锈钢拉伸性能的影响[J]. 钢铁研究学报, 2019, 31(11): 1004-1011. Yan Chunguang, Chen Shenghu, Li Yaping, et al. Influence of hydrogen on tension property of 316H stainless steel[J]. Journal of Iron and Steel Research, 2019, 31(11): 1004-1011. [5]廖振洋, 张继舜, 赵吉庆, 等. 超高压临氢环境用抗氢钢研究进展[J]. 钢铁研究学报, 2023, 35(9): 1053-1064. Liao Zhenyang, Zhang Jishun, Zhao Jiqing, et al. Research progress of hydrogen-resistant steels used in ultra-high pressure hydrogen environment[J]. Journal of Iron and Steel Research, 2023, 35(9): 1053-1064. [6]中村潤, 浄德佳奈, 大村朋彦, 等. 高圧水素用高強度ステンレス鋼 HRX19©[J]. まてりあ, 2018, 57(2): 69-71. [7]Wang Shunheng, Zhang Cunshuai, Liu Jimeng, et al. Effect of solution treatment on microstructures and mechanical properties of high nitrogen stainless steel[J]. Rare Metal Materials and Engineering, 2022, 51(8): 2761-2768. [8]Zhang X, Xun M, Ma J, et al. Effects of heat treatment on precipitation and corrosion resistance of cerium-containing super austenitic stainless steel S31254[J]. Corrosion Communications, 2022, 8: 1-8. [9]Li J, Shen W, Lin P, et al. Effect of solution treatment temperature on microstructural evolution, precipitation behavior, and comprehensive properties in UNS S32750 super duplex stainless steel[J]. Metals, 2020, 10(11): 1481. [10]曹铁山, 赵津艺, 程从前, 等. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682. Cao Tieshan, Zhao Jinyi, Cheng Congqian, et al. Effect of cold deformation and solid solution temperature on σ-phase precipitation behavior in HR3C heat resistant steel[J]. Acta Metallurgica Sinica, 2020, 56(5): 673-682. [11]Kim J M, Kim S J, Kang J H. Effects of short-range ordering and stacking fault energy on tensile behavior of nitrogen-containing austenitic stainless steels[J]. Materials Science and Engineering A, 2022, 836: 142730. [12]李 阳, 张 威, 袁 刚. 冷变形及退火工艺对低温用奥氏体不锈钢组织性能的影响[J]. 金属热处理, 2023, 48(2): 219-223. Li Yang, Zhang Wei, Yuan Gang. Effects of cold deformation and annealing process on microstructure and properties of austenitic stainless steel for low temperature[J]. Heat Treatment of Metals, 2023, 48(2): 219-223. [13]杨 壹, 刘让贤, 杨浩坤, 等. 固溶温度对轻质高锰钢组织及性能的影响[J]. 金属热处理, 2023, 48(8): 113-118. Yang Yi, Liu Rangxian, Yang Haokun, et al. Effects of solution temperature on microstructure and properties of lightweight high manganese steel[J]. Heat Treatment of Metals, 2023, 48(8): 113-118. [14]Macadre A, Tsuchiyama T, Takaki S. Control of hydrogen-induced failure in metastable austenite by grain size refinement[J]. Materialia, 2019, 8: 100514. [15]Khalid H, Shunmugasamy V C, DeMott R W, et al. Effect of grain size and precipitates on hydrogen embrittlement susceptibility of nickel alloy 718[J]. International Journal of Hydrogen Energy, 2024, 55: 474-490. [16]Danielsen H K, Hald J, Grumsen F B, et al. On the crystal structure of Z-phase Cr(V, Nb)N[J]. Metallurgical and Materials Transactions A, 2006, 37(9): 2633-2640. [17]Zhou Y, Liu Y, Zhou X, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review[J]. Journal of Materials Science & Technology, 2017, 33(12): 1448-1456. [18]马 凯, 杨庚蔚, 付至祥, 等. 回火温度对热轧Ti-Mo-V钢第二相析出行为的影响[J]. 钢铁, 2025, 60(2): 84-93. Ma Kai, Yang Gengwei, Fu Zhixiang, et al. Effect of tempering temperature on the second phase precipitation behavior of hot-rolled Ti-Mo-V steel[J]. Iron and Steel, 2025, 60(2): 84-93. |