[1]刘 阳, 刘峻峰, 张 斌, 等. 我国长输天然气用管线钢的发展现状与趋势[J]. 材料热处理学报, 2024, 45(3): 98-112. Liu Yang, Liu Junfeng, Zhang Bin, et al. Development status and trend of pipeline steel for long-distance natural gas transportation in China [J]. Transactions of Materials and Heat Treatment, 2024, 45(3): 98-112. [2]孙 毅, 贾改风, 李冠楠, 等. 海底用耐腐蚀管线钢X60MOS的开发[J]. 轧钢, 2021, 38(3): 27-31. Sun Yi, Jia Gaifeng, Li Guannan, et al. Development of corrosion resistant pipeline steel X60MOS for seabed [J]. Steel Rolling, 2021, 38(3): 27-31. [3]李 龙, 章传国, 庄 旭. 油气长输管道用抗酸管线钢研究进展[J]. 宝钢技术, 2023(6): 66-72. Li Long, Zhang Chuanguo, Zhuang Xu. Research progress on oil and gas long-distance pipeline steel for sour service [J]. Baosteel Technology, 2023(6): 66-72. [4]张 帅, 任 毅, 王 爽, 等. 控轧控冷工艺对海洋高应变管线钢性能和组织的影响[J]. 钢铁研究学报, 2023, 35(11): 1384-1393. Zhang Shuai, Ren Yi, Wang Shuang, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393. [5]徐海健, 韩楚菲, 郭 诚, 等. 加热温度对X80M管线钢性能和组织的影响[J]. 钢铁钒钛, 2024, 45(1): 139-144. Xu Haijian, Han Chufei, Guo Cheng, et al. Effect of heating temperature on the mechanical properties and microstructures of X80M pipeline steels[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 139-144. [6]曾燕屏, 朱鹏宇, 仝 珂. 显微组织对X70管线钢力学性能的影响[J]. 材料热处理学报, 2015, 36(3): 45-50. Zeng Yanping, Zhu Pengyu, Tong Ke. Effect of microstructure on mechanical properties of X70 pipeline steels [J]. Transactions of Materials and Heat Treatment, 2015, 36(3): 45-50. [7]杨小龙, 臧 淼, 郑治秀, 等. 改善L450M管线钢低温韧性的研究[J]. 热加工工艺, 2021, 50(11): 55-59. Yang Xiaolong, Zang Miao, Zheng Zhixiu, et al. Research on improving low temperature toughness of L450M pipeline steel [J]. Hot Working Technology, 2021, 50(11): 55-59. [8]熊祥江, 李艳梅, 陈博轩, 等. 控轧工艺对厚壁X70管线钢低温止裂性能的影响[J]. 轧钢, 2022, 39(2): 37-43. Xiong Xiangjiang, Li Yanmei, Chen Boxuan, et al. Effect of controlled rolling process on low temperature crack arrest performance of thick wall X70 pipeline steel plate[J]. Steel Rolling, 2022, 39(2): 37-43. [9]蔡绪明, 李艳梅, 李中平, 等. 不同冷却方式下X80M管线钢的组织演变[J]. 轧钢, 2023, 40(1): 41-45. Cai Xuming, Li Yanmei, Li Zhongping, et al. Microstructure evolution of X80M pipeline steel under different cooling methods[J]. Steel Rolling, 2023, 40(1): 41-45. [10]Diaz-Fuentes M, Iza-Mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metallurgical and Materials Transactions A, 2003, 34: 2505-2516. [11]吴洁琼, 陈 科, 陈杏芳, 等. EBSD在Nimonic 80A动态再结晶机制研究中的应用[J]. 电子显微学报, 2011, 30(4): 356-359. Wu Jieqiong, Chen Ke, Chen Xingfang, et al. Application of EBSD in the study of dynamic recrystallization mechanisms in Nimonic 80A [J]. Journal of Chinese Electron Microscopy Society, 2011, 30(4): 356-359. [12]Gao S, Di X, Li C, et al. Effect of austenite transformation degree on microstructure and fracture toughness of high-strain pipeline steel [J]. Journal of Materials Science, 2021, 56(24): 13827-13840. [13]谭会杰, 鲍小光, 吴忠旺, 等. X80管线钢的过冷奥氏体转变规律和相变模型[J]. 金属热处理, 2023, 48(7): 61-65. Tan Huijie, Bao Xiaoguang, Wu Zhongwang, et al. Transformation law of super-cooled austenite and phase transformation model of X80 pipeline steel[J]. Heat Treatment of Metals, 2023, 48(7): 61-65. [14]牛延龙, 刘清友, 贾书君, 等. 控冷工艺下组织及M/A岛对管线钢韧性的影响[J]. 钢铁, 2020, 55(6): 91-100. Niu Yanlong, Liu Qingyou, Jia Shujun, et al. Influence of microstructure and M/A island evolution on toughness of pipeline steel under controlled cooling process [J]. Iron and Steel, 2020, 55(6): 91-100. [15]董 瀚. 先进钢铁材料[M]. 北京: 科学出版社, 2008. [16]赵贤平, 杜海明, 陈新慈, 等. 冷却工艺对700 MPa级低碳贝氏体钢M/A岛的影响[J]. 宽厚板, 2013, 19(2): 1-4. Zhao Xianping, Du Haiming, Chen Xinci, et al. Efects of cooling process on M/A islands of 700 MPa grade low carbon bainitic steel [J]. Wide and Heavy Plate, 2013, 19(2): 1-4. [17]邵春娟, 邵 伟, 镇 凡, 等. 控轧控冷工艺对X70级抗大变形管线钢组织与性能的影响[J]. 材料热处理学报, 2020, 41(3): 110-116. Shao Chunjuan, Shao Wei, Zhen Fan, et al. Effect of controlled rolling and controlled cooling process on microstructure and mechanical properties of X70 pipeline steel [J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 110-116. [18]熊祥江, 范 明, 杨小军, 等. 大口径厚规格X80管线钢的低温断裂控制[J]. 金属热处理, 2021, 46(4): 227-231. Xiong Xiangjiang, Fan Ming, Yang Xiaojun, et al. Low temperature fracture control of heavy-gauge X80 pipeline steel for large diameter pipe [J]. Heat Treatment of Metals, 2021, 46(4): 227-231. [19]贾书君, 刘清友, 李 拔. EBSD技术在厚规格管线钢DWTT研究中的应用[J]. 金属热处理, 2016, 41(4): 197-200. Jia Shujun, Liu Qingyou, Li Ba. Application of EBSD technology on DWTT research of thickness specification pipeline steel [J]. Heat Treatment of Metals, 2016, 41(4): 197-200. [20]张继明, 朱延山, 邵春娟, 等. X65抗酸管线钢氢致开裂的晶体学表征[J]. 电子显微学报, 2020, 39(3): 261-267. Zhang Jiming, Zhu Yanshan, Shao Chunjuan, et al. Crystallographic characterization of hydrogen induced cracking in an X65MS acid-resistant pipeline steel [J]. Journal of Chinese Electron Microscopy Society, 2020, 39(3): 261-267. [21]马才女, 高雪云, 邢 磊, 等. 铁素体/马氏体双相钢拉伸变形过程中应力应变不均匀性分析[J]. 材料导报, 2023, 37(11): 182-185. Ma Cainü, Gao Xueyun, Xing Lei, et al. Analysis of stress and strain inhomogeneity during the tensile deformation of ferrite/martensitic dual phase steel [J]. Materials Reports, 2023, 37(11): 182-185. |