[1]Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia, 1997, 45(12): 4901-4907. [2]Saini N, Pandey C, Mahapatra M M. Effect of normalizing temperature on fracture characteristic of tensile and impact tested creep strength-enhanced ferritic P92 steel[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5414-5424. [3]刘福广, 李太江, 梁 军, 等. 高温时效对P92钢焊接接头显微组织和力学性能的影响[J]. 中国电机工程学报, 2011, 31(14): 121-126. Liu Fuguang, Li Taijiang, Liang Jun, et al. Effect of thermal aging on microstructure and mechanical properties of P92 steel weld joints[J]. Proceedings of the CSEE, 2011, 31(14): 121-126. [4]Guo X, Jiang Y, Gong J, et al. The influence of long-term thermal exposure on microstructural stabilization and mechanical properties in 9Cr-0.5Mo-1.8W-VNb heat-resistant steel[J]. Materials Science and Engineering A, 2016, 672: 194-202. [5]Saini N, Mulik R S, Mahapatra M M. Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel[J]. Materials Science and Engineering A, 2018, 716: 179-188. [6]殷 尊, 蔡 晖, 刘鸿国. 1000MW超超临界机组用P92耐热钢高温服役后的性能[J]. 材料热处理学报, 2012, 33(11): 105-110. Yin Zun, Cai Hui, Liu Hongguo. Performance of heat-resistant steel P92 used in 1000 MW ultra supercritical unit after long-term service at high temperature[J]. Transactions of Materials and Heat Treatment, 2012, 33(11): 105-110. [7]刘 睿, 邹 勇, 张忠文, 等. 超超临界机组用P92钢高温服役8000 h后显微组织与韧性[J]. 材料热处理学报, 2014, 35(9): 116-120. Liu Rui, Zou Yong, Zhang Zhongwen, et al. Microstructure and toughness of steel P92 used in ultra supercritical unit after 8000 h service at high temperature[J]. Transactions of Materials and Heat Treatment, 2014, 35(9): 116-120. [8]金 晓, 周 龙, 奚 宇, 等. P92钢长时服役后的组织性能对比研究[J]. 中国电机工程学报, 2023, 43(21): 8378-8388. Jin Xiao, Zhou Long, Xi Yu, et al. Comparative study on microstructure and properties of P92 steel after long-term service[J]. Proceedings of the CSEE, 2023, 43(21): 8378-8388. [9]刘 成, 彭志方, 彭芳芳, 等. P92钢625 ℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104. Liu Cheng, Peng Zhifang, Peng Fangfang, et al. Phase parameter changes of specific positions of P92 steel specimens during creep rupture test at 625 ℃[J]. Journal of Materials Engineering, 2020, 48(3): 98-104. [10]Pešička J, Kužel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2003, 51(16): 4847-4862. [11]Hirsch P B, Howie A, Nicholson R B, et al. Electron Microscopy of Thin Crystals[M]. London: Butterworths, 1977. [12]Hald J. Microstructure and long-term creep properties of 9-12% Cr steels[J]. International Journal of Pressure Vessels an Piping, 2008, 85(1): 30-37. [13]何利军, 周 龙, 汤淳坡, 等. 长时服役后T92钢管的微观组织及力学性能变化[J]. 金属热处理, 2021, 46(7): 31-36. He Lijun, Zhou Long, Tang Chunpo, et al. Microstructure evolution and property change of T92 heat resistant steel pipe after long term service[J]. Heat Treatment of Metals, 2021, 46(7): 31-36. [14]彭杏娜, 丛相州, 彭先宽, 等. P92耐热钢弯头高温持久过程组织表征[J]. 金属热处理, 2025, 50(1): 230-235. Peng Xingna, Cong Xiangzhou, Peng Xiankuan, et al. Characterization of microstructure of P92 heat-resistant steel elbow during high-temperature creep rupture process[J]. Heat Treatment of Metals, 2025, 50(1): 230-235. [15]Abe F. Progress in creep-resistant steels for high efficiency coal-fired power plants[J]. Journal of Pressure Vessel Technology, 2016, 138(4): 040804. [16]Sakthivel T, Selvi S P, Laha K. An assessment of creep deformation and rupture behaviour of 9Cr-1.8W-0.5Mo-VNb (ASME grade 92) steel[J]. Materials Science and Engineering A, 2015, 640: 61-71. [17]彭志方, 党莹樱, 彭芳芳. 9%-12%Cr铁素体耐热钢持久性能评估方法的研究[J]. 金属学报, 2010, 46(4): 435-443. Peng Zhifang, Dang Yingying, Peng Fangfang. Study on creep-rupture property assessment method for 9%-12%Cr ferritic heat-resistant steels[J]. Acta Metallurgica Sinica, 2010, 46(4): 435-443. [18]Dieter G E, Bacon D. Mechanical Metallurgy[M]. New York: McGraw-hill Book Company, 1988. [19]Saini N, Mulik R S, Mahapatra M M. Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel[J]. Materials Science and Engineering A, 2018, 716: 179-188. [20]Guo X, Jiang Y, Gong J, et al. The influence of long-term thermal exposure on microstructural stabilization and mechanical properties in 9Cr-0.5Mo-1.8W-VNb heat-resistant steel[J]. Materials Science and Engineering A, 2016, 672: 194-202. [21]Zhong W, Wang W, Yang X, et al. Relationship between Laves phase and the impact brittleness of P92 steel reevaluated[J]. Materials Science and Engineering A, 2015, 639: 252-258. [22]张红军, 周荣灿, 范长信. Laves相对P92钢冲击韧性影响的试验研究[J]. 动力工程学报, 2012, 32(1): 84-88. Zhang Hongjun, Zhou Rongcan, Fan Changxin. Influence of laves phase on impact toughness of P92 steel[J]. Journal of Chinese Society of Power Engineering, 2012, 32(1): 84-88. [23]Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. Florida: CRC Press, 2017. |