[1]赵瑾玥, 郭永环, 阎 勃. 铈和铌改性对DP780双相钢焊缝冲击性能的影响[J]. 钢铁, 2021, 56(11): 135-140. Zhao Jinyue, Guo Yonghuan, Yan Bo.Effect of Ce and Nb modification on weld impact properties of DP780 duplex steel[J]. Iron and Steel, 2021, 56(11): 135-140. [2]周 英, 韩 斌, 刘华赛, 等. 热基镀锌双相钢的组织性能与表面质量[J]. 钢铁, 2021, 56(11): 104-111. Zhou Ying, Han Bin, Liu Huasai, et al. Microstructure, properties and surface quality of hot-rolled galvanized dual phase steel[J]. Iron and Steel, 2021, 56(11): 104-111. [3]刘鹏飞, 关 琳, 刘 建, 等. 退火工艺对低成本980 MPa级冷轧双相钢组织和性能的影响[J]. 金属热处理, 2024, 49(3): 122-127. Liu Pengfei, Guan Lin, Liu Jian, et al.Effect of annealing process on structure and properties of a low cost 980 MPa cold-rolled dual-phase steel[J]. Heat Treatment of Metals, 2024, 49(3): 122-127. [4]樊立峰, 郭芷毓, 张志朋, 等. 逆相变退火时间对5%Mn冷轧中锰钢显微组织和力学性能的影响[J]. 金属热处理, 2023, 48(6): 29-35. Fan Lifeng, Guo Zhiyu, Zhang Zhipeng, et al.Effect of reverse phase transformation annealing time on microstructure and mechanical properties of 5%Mn cold-rolled medium manganese steel[J]. Heat Treatment of Metals, 2023, 48(6): 29-35. [5]罗小兵, 朱 飞, 杨才福, 等. 纳米粒子强化含铜双相钢的组织性能关系[J]. 钢铁, 2021, 56(9): 118-128. Luo Xiaobing, Zhu Fei, Yang Caifu, et al. Relationships between microstructure and properties in dual phase Cu-bearing steel strengthened by nano sized precipitates[J]. Iron and Steel, 2021, 56(9): 118-128. [6]刘志桥, 陈 刚, 张志建, 等. 退火工艺对DP590双相钢组织与力学性能的影响[J]. 金属热处理, 2019, 44(10): 87-90. Liu Zhiqiao, Chen Gang, Zhang Zhijian, et al.Effect of annealing process on microstructure and mechanical properties of DP590 dual-phase steel[J]. Heat Treatment of Metals, 2019, 44(10): 87-90. [7]Scott C P, Fazeli F, Shalchi A B, et al. Structure-properties relationship of ultra-fine grained V-microalloyed dual phase steels[J]. Materials Science and Engineering A, 2017, 703: 293-303. [8]Tang A, Liu H, Chen R, et al. Mesoscopic origin of damage nucleation in dual-phase steels[J]. International Journal of Plasticity, 2021, 137: 102920. [9]Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019, 54(19): 12898-12910. [10]颜文超, 高 波, 肖礼容, 等. 温轧和临界退火制备超细晶异构双相钢的微观结构及力学性能[J]. 金属热处理, 2024, 49(7): 54-62. Yan Wenchao, Gao Bo, Xiao Lirong, et al.Microstructure and mechanical properties of ultrafine grained heterostructured dual-phase steel prepared by warm rolling and intercritical annealing[J]. Heat Treatment of Metals, 2024, 49(7): 54-62. [11]熊雪刚, 张开华, 陈 述, 等. 锰含量和层流冷却空冷时间对热轧DP600双相钢组织和强度的影响[J]. 机械工程材料, 2023, 47(7): 72-90. Xiong Xuegang, Zhang Kaihua, Chen Shu, et al.Effect of Mn content and laminar cooling air cooling time on microstructure and strength of hot rolled DP600 dual-phase steel[J]. Materials for Mechanical Engineering, 2023, 47(7): 72-90. [12]Same J, Zhou L, Kang J, et al. Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels[J]. International Journal of Plasticity, 2019, 117: 58-70. [13]Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging[J]. Acta Materialia, 2011, 59(2): 658-670. [14]Pan Z, Gao B, Lai Q, et al. Microstructure and mechanical properties of a cold-rolled ultrafine-grained dual-phase steel[J]. Materials, 2018, 11(8): 1399. [15]Gao X, Wang H, Xing L, et al. The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels[J]. Materials Science and Engineering A, 2021, 805: 140547. [16]Bakhtiari M, Kermanpur A, Han J, et al. Effect of intercritical annealing on microstructure and tensile properties of an ultrafine-grained dual-phase low alloy steel containing titanium[J]. Steel Research International, 2020, 91(9): 2000118. [17]Mazaheri Y, Kermanpur A, Najafizadeh A, et al. Effects of initial microstructure and thermomechanical processing parameters on microstructures and mechanical properties of ultrafine-grained dual phase steels[J]. Materials Science and Engineering A, 2014, 612: 54-62. [18]Liu L, Li L, Liang Z, et al. Towards ultra-high strength dual-phase steel with excellent damage tolerance: The effect of martensite volume fraction[J]. International Journal of Plasticity, 2023, 170: 103778. [19]Hashemi S G, Eghbali B. Evolution of high strength and ductile ultrafine grained dual phase superferrite low carbon V-Nb-Mo steel[J]. Materials Science and Engineering A, 2017, 705: 32-41. [20]Yoo J, Jo M C, Bian J, et al. Effects of Nb or (Nb+Mo) alloying on Charpy impact, bending, and delayed fracture properties in 1.9-GPa-grade press hardening steels[J]. Materials Characterization, 2021, 176: 111133. [21]Tu X, Shi X, Yan W, et al. Tensile deformation behavior of ferrite-bainite dual-phase pipeline steel[J]. Materials Science and Engineering A, 2022, 831: 142230. [22]Sun J, Wang H, Xu B, et al. Making low-alloyed steel strong and tough by designing a dual-phase layered structure[J]. Acta Materialia, 2022, 227: 117701. [23]Sun B R, Zhou A D, Li Y L, et al. Ultrafine-grained oxide-dispersion-strengthened 9Cr steel with exceptional strength and thermal stability[J]. Nuclear Materials and Energy, 2022, 30: 101112. [24]Liang J W, Shen Y F, Misra R D K, et al. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides[J]. Journal of Materials Science and Technology, 2021, 83: 131-144. [25]Kundu A, Fielld D P. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel[J]. Materials Science and Engineering A, 2016, 667: 435-443. [26]Cai H L, Wang J F, Wu D, et al. A simple methodology to determine fracture strain of press-hardened steels under plane strain bending[J]. Metallurgical and Materials Transactions A, 2021, 52(2): 644-654. |