[1] 赵志刚, 陈建礼, 张锦文, 等. 回火工艺对铁路用A3车轴钢组织及力学性能的影响[J]. 金属热处理, 2024, 49(1): 202-205. Zhao Zhigang, Chen Jianli, Zhang Jinwen, et al. Effect of tempering process on microstructure and mechanical properties of A3 axle steel for railway[J]. Heat Treatment of Metals, 2024, 49(1): 202-205. [2] 张 伟, 张哲维, 赵闵明, 等. EA4T动车组车轴疲劳性能评价影响因素研究[J]. 高速铁路新材料, 2023, 2(4): 19-24. Zhang Wei, Zhang Zhewei, Zhao Minming, et al. Study on influencing factors in evaluating the fatigue performance of EA4T axle[J]. Advanced Materials of High Speed Railway, 2023, 2(4): 19-24. [3] Luo Y, Li C H, Kang X P, et al. Fatigue limit and residual life evaluation of railway EA4T axles with artificial surface impacts[J]. Journal of Materials Engineering and Performance, 2022, 32(11): 5167-5175. [4] Xie Y J, Chen W J, Liang L B, et al. Influence of laser power on the microstructure and properties of Fe314 alloy cladding layer on EA4T steel[J]. Welding in the World, 2022, 66(8): 1551-1563. [5] 周素霞, 孙宇铎, 吴 毅, 等. 典型缺陷对30NiCrMoV12车轴疲劳极限影响的研究[J]. 铁道学报, 2021, 43(1): 56-63. Zhou Suxia, Sun Yuduo, Wu Yi, et al. Research on influence of typical defects on fatigue limit of 30NiCrMoV12 axle[J]. Journal of the China Railway Society, 2021, 43(1): 56-63. [6] 薛振峰, 赵兴龙, 王艳芳. 30NiCrMoV12钢车轴的热处理工艺[J]. 金属热处理, 2016, 41(7): 139-141. Xue Zhenfeng, Zhao Xinglong, Wang Yanfang. Heat treatment of 30NiCrMoV12 steel axle[J]. Heat Treatment of Metals, 2016, 41(7): 139-141. [7] 李秋泽, 张英春, 陈 丞, 等. 30NiCrMoV12和EA4T材质高速动车组车轴服役性能[J]. 西南交通大学学报, 2020, 55(6): 1306-1312, 1336. Li Qiuze, Zhang Yingchun, Chen Cheng, et al. Service performance of high-speed EMU axles of 30 NiCrMoV12 and EA4T[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1306-1312, 1336. [8] 陈 楚, 何 毅, 黄军波, 等. 高速列车车轴钢30NiCrMoV12的热变形行为[J]. 特殊钢, 2014, 35(5): 57-60. Chen Chu, He Yi, Huang Junbo, et al. Behavior of hot deformation of steel 30NiCrMoV12 for high-speed train axles[J]. Special Steel, 2014, 35(5): 57-60. [9] 康 健, 袁 国, 王国栋. 亚温淬火下组织形态对高强低合金钢冲击韧性的影响[J]. 材料热处理学报, 2015, 36(12): 152-157. Kang Jian, Yuan Guo, Wang Guodong. Effect of microstructure on impact toughness of a high strength low alloy steel processed by intercritical quenching[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 152-157. [10] 张思斌, 黄一栋, 刘 壮, 等. 热处理对微合金钢组织和力学性能的影响[J]. 热加工工艺, 2022, 51(20): 114-117. Zhang Sibin, Huang Yidong, Liu Zhuang, et al. Effects of heat treatment on microstructure and mechanical properties of microalloyed steel[J]. Hot Working Technology, 2022, 51(20): 114-117. [11] 武兆洋, 平宪忠, 郑宝超, 等. 不同水基淬火介质对ZG30CrMnSiMo低合金钢组织和耐磨性的影响[J]. 金属热处理, 2021, 46(5): 60-65. Wu Zhaoyang, Ping Xianzhong, Zheng Baochao, et al. Effect of different water-based quenching media on microstructure and wear resistance of ZG30CrMnSiMo low alloy steel[J]. Heat Treatment of Metals, 2021, 46(5): 60-65. [12] 周素霞, 段粟宇, 吴 毅, 等. 含缺陷的30NiCrMoV12车轴钢的多变量疲劳性能研究[J]. 机械工程学报, 2023, 59(14): 237-244. Zhou Suxia, Duan Suyu, Wu Yi, et al. Study on extraction of wheel profile wear characteristics and curve parameterization description of high-speed train wheels[J]. Journal of Mechanical Engineering, 2023, 59(14): 237-244. [13] 黄军波, 何 毅, 霍 洁, 等. 30NiCrMoV12高铁车轴钢连续冷却相变组织[J]. 材料热处理学报, 2021, 42(1): 132-139. Huang Junbo, He Yi, Huo Jie, et al. Continuous cooling phase transformation microstructure of 30NiCrMoV12 steel for high-speed railway axle[J]. Transactions of Materials and Heat Treatment, 2021, 42(1): 132-139. |