[1] Ennis P J, Czyrska-Filemonowicz A. Recent advances in creep-resistant steels for power plant applications[J]. Sadhana, 2003, 28: 709-730.  [2] Maddi L, Ballal A R, Peshwe D R, et al. Effect of tempering temperature on the stress rupture properties of grade 92 steel[J]. Materials Science and Engineering A, 2015, 639: 431-438.  [3] Kaneko K, Matsumura S, Sadakata A, et al. Characterization of carbides at different boundaries of 9Cr-steel[J]. Materials Science and Engineering A, 2004, 374: 82-89.  [4] Shen Y Z, Liu H, Shang Z X, et al. Precipitate phases in normalized and tempered ferritic/martensitic steel P92[J]. Journal of Nuclear Materials, 2015, 465: 373-382.  [5] Kostka A, Tak K G, Hellmig R J, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels[J]. Acta Materialia, 2007, 55: 539-550.  [6] Maile K. Evaluation of microstructural parameters in 9-12% Cr-steels[J]. International Journal of Pressure Vessels and Piping, 2007, 84: 62-68.  [7] Yu Fanxian, Chen Jining, Sun Fu, et al. Trend of technology innovation in China's coal-fired electricity industry under resource and environmental constraints[J]. Energy Policy, 2011, 39: 1586-1599.  [8] 王 鲁, 陈卓婷, 白 佳. 超超临界火电机组用P92钢管硬度异常原因分析[J]. 金属热处理, 2019, 44(10): 192-196.  Wang Lu, Chen Zhuoting, Bai Jia. Cause analysis for abnormal hardness of P92 steel pipe used in ultra-supercritical thermal power unit[J]. Heat Treatment of Metals, 2019, 44(10): 192-196.  [9] 王 学, 于淑敏, 任遥遥, 等. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.  Wang Xue, Yu Shumin, Ren Yaoyao, et al. Laves phase evolution in P92 steel during ageing[J]. Acta Metallurgica Sinica, 2014, 50(10): 1195-1202.  [10] Guo X F, Gong J M, Jiang Y, et al. The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature[J]. Materials Science and Engineering A, 2013, 564: 199-205.  [11] Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9: 013002.  [12] Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5 Mo-1.8 W-VNb steel[J]. Materials Science and Engineering A, 2001, 319: 784-787.  [13] Lee J S, Armaki H G, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr-1.8 W-0.5 Mo-VNb steel[J]. Materials Science and Engineering A, 2006, 428: 270-275.  [14] Danielsen H K, Hald J. Behaviour of Z phase in 9-12%Cr steels[J]. Energy Materials, 2006, 1: 49-57.  [15] 李 勇, 马佳林, 王万里, 等. 服役后P92钢管不同硬度区的显微结构及拉伸性能[J]. 金属热处理, 2024, 49(10): 147-154.  Li Yong, Ma Jialin, Wang Wanli, et al. Microstructure and tensile properties of different hardness regions in as-served P92 steel pipe[J]. Heat Treatment of Metals, 2024, 49(10): 147-154.  [16] 赵勇桃, 吴银虎, 鲁海涛, 等. P92钢的CCT图及组织转变[J]. 兵器材料科学与工程, 2023, 46(2): 73-77.  Zhao Yongtao, Wu Yinhu, Lu Haitao, et al. CCT diagram and microstructure transformation of P92 steel[J]. Ordnance Material Science and Engineering, 2023, 46(2): 73-77.  [17] 阙莉莉. T/P92钢CCT曲线测试与分析[J]. 山东冶金, 2017, 39(2): 41-42.  Que Lili. Measurement and analysis on the CCT diagram of T/P92 steel[J]. Shandong Metallurgy, 2017, 39(2): 41-42.  [18] Pealba F, Gómez-Mitxelena X, Jiménez J A, et al. Effect of temperature on mechanical properties of 9%Cr ferritic steel[J]. ISIJ International, 2016, 56: 1662-1667.  [19] Dos Santos S L, Santos S F. Heat treatment of the SAE 9254 spring steel: Influence of cooling rate on the microstructure and microhardness[J]. Next Materials, 2024, 3: 100175.  [20] 崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007.  [21] 董 鹏. P91 钢管硬度检测值偏低原因分析[J]. 内蒙古电力技术, 2015, 33(3): 74-76.  Dong Peng. Lower hardness measured value analysis of P91 steel pipes in thermal power plants[J]. Inner Mongolia Electric Power, 2015, 33(3): 74-76.  [22] 秦利波. 控制P91钢管表面硬度的研究[J]. 天津冶金, 2019(2): 29-32.  Qin Libo. Study on controlling the surface hardness of P91 steel pipe[J]. Tianjin Metallurgy, 2019(2): 29-32.  [23] 李益民, 范长信, 杨百勋, 等. 大型火电机组用新型耐热钢[M]. 北京: 中国电力出版社, 2013.  [24] 马佳林. 长期服役P92钢主蒸汽管道外壁区域低硬度成因探讨及剩余寿命预测[D]. 合肥: 合肥工业大学, 2025.  [25] 占先强, 汤文明, 刘俊建, 等. 时效粗、细晶Super304H钢的第二相析出行为及力学性能[J]. 材料热处理学报, 2023, 44(5): 152-161.  Zhan Xianqiang, Tang Wenming, Liu Junjian, et al. Second phase precipitation behavior and mechanical properties of aged coarse-/fine-grain Super304H steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(5): 152-161.  [26] 程 翔, 鲍 峥, 王若民, 等. 服役态不同晶粒度TP347HFG钢管的显微组织与力学性能的对比[J]. 材料热处理学报, 2024, 45(1): 148-156.  Cheng Xiang, Bao Zheng, Wang Ruomin, et al. Comparison of microstructure and mechanical properties of in-service TP347HFG steel tubes with different grain sizes[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 148-156.  [27] Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia, 1997, 45(12): 4901-4907.  [28] Abe F, Araki H, Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels[J]. Metallurgical Transactions A, 1991, 22(10): 2225-2235.  [29] Miyata K, Sawaragi Y. Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels[J]. ISIJ International, 2001, 41(3): 281-289.  [30] 徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1980.  [31] Kelly P M, Pollard G. The movement of slip dislocations in internally twinned martensite[J]. Acta Metallurgica, 1969, 17(8): 1005-1008.  [32] Xu Y T, Zhang X Y, Tian Y B, et al. Study on the nucleation and growth of M23C6 carbides in a 10%Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111: 122-127. |