[1] 李忠波, 吴志方, 吴 润. 低合金马氏体耐磨钢的研究进展[J]. 金属热处理, 2024, 49(7): 132-138. Li Zhongbo, Wu Zhifang, Wu Run. Research progress of low alloy martensitic wear-resistant steel[J]. Heat Treatment of Metals, 2024, 49(7): 132-138. [2] Wang Z D, Kang J, Lu F, et al. Study on quenching and tempering process of Q960 high strength steel for construction machinery[J]. Journal of Iron and Steel Research International, 2011, 18(S1): 432-436. [3] Zhen F, Zhang K, Qiao K, et al. Effect of original microstructure on the mechanical properties of an intercritically quenched and tempered HB400 grade heavy plate[C]//HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels, 2015. [4] 邓 杰, 宋新莉, 郑爱琴, 等. 回火温度对Cu-Cr-Ti马氏体耐磨钢组织及强韧性的影响[J]. 钢铁研究学报, 2019, 31(12): 1031-1038. Deng Jie, Song Xinli, Zheng Aiqin, et al. Effect of tempering temperature on microstructure and mechanical properties of Cu-Cr-Ti martensite wear-resistant steel[J]. Journal of Iron and Steel Research, 2019, 31(12): 1031-1038. [5] 李 钊, 吴 润, 徐 乐, 等. 30CrMoTi钢的组织遗传及晶粒细化[J]. 金属热处理, 2018, 43(2): 116-121. Li Zhao, Wu Run, Xu Le, et al. Structure heredity and grain refinement of 30CrMoTi steel[J]. Heat Treatment of Metals, 2018, 43(2): 116-121. [6] Morsdorf L, Emelina E, Gault B, et al. Carbon redistribution in quenched and tempered lath martensite[J]. Acta Materialia, 2021, 205: 116521. [7] 宋 欣, 王根矶, 张国栋, 等. 厚规格调质高强钢Q890的研制与开发[J]. 材料热处理学报, 2014, 35(8): 147-152. Song Xin, Wang Genji, Zhang Guodong, et al. Research and development of heavy gauge quenched and tempered high strength Q890 steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(8): 147-152. [8] 戎咏华, 陈乃录. C同时提高马氏体钢强度和塑性的原理和机制[J]. 金属学报, 2017, 53(1): 1-9. Rong Yonghua, Chen Nailu. The principle and mechanism of enhancement of both strength and ductility of martensitic steels by carbon[J]. Acta Metallurgica Sinica, 2017, 53(1): 1-9. [9] 景 勤, 牟 军, 康大韬, 等. 高淬透性钢的组织遗传及其消除[J]. 钢铁, 1998, 33(7): 43-45. Jing Qin, Mu Jun, Kang Datao, et al. Structure heredity of high hardenability steels and its elimination[J]. Iron and Steel, 1998, 33(7): 43-45. [10] 镇 凡, 邵春娟, 陆春洁, 等. 回火温度对低碳马氏体高强钢组织和性能的影响[J]. 材料热处理学报, 2022, 43(10): 160-168. Zhen Fan, Shao Chunjuan, Lu Chunjie, et al. Effect of tempering temperature on microstructure and properties of low carbon martensitic high strength steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(10): 160-168. [11] 镇 凡, 邵春娟, 黄 朋, 等. 淬火工艺对马氏体高强钢组织和性能的影响[J]. 钢铁研究学报, 2022, 34(10): 1169-1176. Zhen Fan, Shao Chunjuan, Huang Peng, et al. Effect of quenching process on microstructure and properties of martensitic high strength steel[J]. Journal of Iron and Steel Research, 2022, 34(10): 1169-1176. [12] 陈连生, 曹鸿梓, 田亚强, 等. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 材料导报, 2017, 31(3): 105-109. Chen Liansheng, Cao Hongzi, Tian Yaqiang, et al. Influence of precursor on microstructure and mechanical property of a Cu bearing low-carbon steel by I&Q&P treatment[J]. Materials Reports, 2017, 31(3): 105-109. [13] 王 飞, 赵成志, 李建新, 等. 正火处理对高强钢临界变形粗晶组织的影响[J]. 金属热处理, 2019, 44(8): 192-195. Wang Fei, Zhao Chengzhi, Li Jianxin, et al. Effect of normalizing treatment on critical deformed coarse grains of high-strength steel[J]. Heat Treatment of Metals, 2019, 44(8): 192-195. [14] 王小勇, 潘 涛, 王 华, 等. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究[J]. 金属学报, 2012, 48(4): 401-406. Wang Xiaoyong, Pan Tao, Wang Hua, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel[J]. Acta Metallurgica Sinica, 2012, 48(4): 401-406. |