[1] 郑 医, 何培刚, 李 宁, 等. 航空渗碳齿轮钢的迭代发展[J]. 航空材料学报, 2023, 43(1): 60-69. Zheng Yi, He Peigang, Li Ning, et al. Material iterative development of aero carburizing gear steels[J]. Journal of Aeronautical Materials, 2023, 43(1): 60-69. [2] Yin Longcheng, Ma Xinxin, Tang Guangze, et al. Characterization of carburized 14Cr14Co13Mo4 stainless steel by low pressure carburizing[J]. Surface and Coatings Technology, 2019, 358: 654-660. [3] Wei Shaopeng, Wang Gang, Zhao Xianhui, et al. Experimental study on vacuum carburizing process for low-carbon alloy steel[J]. Journal of Materials Engineering and Performance, 2014, 23(2): 545-550. [4] 张泽宇, 邓小虎, 凡园园, 等. 20MnCrS5真空低压渗碳气淬多场耦合模拟分析[J]. 表面技术, 2024, 53(15): 194-205. Zhang Zeyu, Deng Xiaohu, Fan Yuanyuan, et al. Multi-field coupling simulation analysis of 20MnCrS5 vacuum low pressure carburizing and gas quenching[J]. Surface Technology, 2024, 53(15): 194-205. [5] 姜 超, 丛培武, 陆文林, 等. 真空低压渗碳工艺及装备技术研究进展[J]. 金属热处理, 2024, 49(12): 111-121. Jiang Chao, Cong Peiwu, Lu Wenlin, et a1. Research progress of vacuum low-pressure carburizing technology and equipment development[J]. Heat Treatment of Metals, 2024, 49(12): 111-121. [6] 张治中, 张 银, 胡云波, 等. 9310航空齿轮真空渗碳热处理表面强化数值模拟及工艺参数优化[J]. 重庆理工大学学报(自然科学), 2024, 38(7): 194-203. Zhang Zhizhong, Zhang Yin, Hu Yunbo, et al. Numerical simulation and process parameter optimization of surface strengthening for 9310 aviation gear vacuum carburization heat treatment[J]. Journal of Chongqing University of Technology(Natural Science), 2024, 38(7): 194-203. [7] 袁 丽, 贺笃鹏, 何 欣, 等. 16Cr3NiWMoVNbE钢C型环真空低压渗碳及淬火有限元模拟[J]. 金属热处理, 2022, 47(9): 257-263. Yuan Li, He Dupeng, He Xin, et al. Finite element simulation of vacuum low pressure carburizing and quenching of 16Cr3NiWMoVNbE steel C-ring[J]. Heat Treatment of Metals, 2022, 47(9): 257-263. [8] 田 勇, 安小雪, 王昭东, 等. 12Cr2Ni4A钢高温真空低压脉冲渗碳工艺[J]. 东北大学学报(自然科学版), 2020, 41(9): 1251-1256. Tian Yong, An Xiaoxue, Wang Zhaodong, et al. High temperature vacuum low-pressure pulse carburizing process of 12Cr2Ni4Asteel[J]. Journal of Northeastern University(Nature Science), 2020, 41(9): 1251-1256. [9] 徐德佳, 于 淼, 郭建宁. 16CrNi4MoA钢淬火工艺改进[J]. 金属热处理, 2016, 41(5): 160-161. Xu Dejia, Yu Miao, Guo Jianning. Improvement of quenching process of 16CrNi4MoA steel[J]. Heat Treatment of Metals, 2016, 41(5): 160-161. [10] 何 寅, 付中元, 张兴洪, 等. G13Cr4Mo4Ni4V钢真空渗碳C浓度梯度分布数值模拟与应用软件开发[J/OL]. 热加工工艺, 1-5[2025-03-19]. He Yin, Fu Zhongyuan, Zhang Xinghong, et al. Numerical simulation of C concentration gradient distribution after vacuum carburizing of G13Cr4Mo4Ni4V steel and development of application software[J/OL]. Hot Working Technology, 1-5[2025-03-19]. [11] 高金柱, 王爱香, 顾 敏. 高合金齿轮渗碳钢热处理工艺特性的研究现状[J]. 热处理技术与装备, 2010, 31(6): 1-6. Gao Jinzhu, Wang Aixiang, Gu Min. Research on the properties of heat treatment technology for high-alloy carburizing gear steels[J]. Heat Treatment Technology and Equipment, 2010, 31(6): 1-6. [12] 王 斌, 何燕萍, 王昊杰, 等. 航空齿轮钢16Cr3NiWMoVNbE的低压真空渗碳[J]. 材料研究学报, 2020, 34(1): 35-42. Wang Bin, He Yanping, Wang Haojie, et al. Vacuum low-pressure carburization of gear steel 16Cr3NiWMoVNbE for aviation[J]. Chinese Journal of Materials Research, 2020, 34(1): 35-42. [13] 张明皓. 18CrNiMo7-6真空渗碳工艺及弥散碳化物控制的研究[D]. 北京: 机械科学研究总院, 2022. Zhang Minghao. Study on vacuum carburizing method and dispersed carbides of 18CrNiMo7-6 gear steel[D]. Beijing: Academy of Machinery Science and Technology, 2022. [14] 吕虎跃. 弥散碳化物强化真空渗碳工艺研究及数值模拟[D]. 北京: 机械科学研究总院, 2023. Lü Huyue. Study on vacuum carburizing process strengthened by carbides and numerical simulations[D]. Beijing: Academy of Machinery Science and Technology, 2023. |