[1] 付云峰, 徐德祥, 陆佰亮. 国内轴承钢的生产现状及发展[J]. 特殊钢, 2002(6): 30-32. Fu Yunfeng, Xu Dexiang, Lu Bailiang. Present status and development of bearing steel production in China[J]. Special Steel, 2002(6): 30-32. [2] 杨 欢. 国内轴承钢行业发展现状及趋势[J]. 中国钢铁业, 2019(7): 32-36. [3] 朱祖昌, 杨弋涛. 第一代、第二代和第三代轴承钢及其热处理技术的研究进展(一)[J]. 热处理技术与装备, 2018, 39(6): 70-76. Zhu Zuchang, Yang Yitao. Investigative advancement in first, second and third generational bearing steel and heat treatment technics(Ⅰ)[J]. Heat Treatment Technology and Equipment, 2018, 39(6): 70-76. [4] 符云龙, 张 旭, 魏秀军. 轴承钢发展现状及发展趋势[J]. 山西冶金, 2023, 46(11): 80-81. Fu Yunlong, Zhang Xu, Wei Xiujun. Development status and trend of bearing steel[J]. Shanxi Metallurgy, 2023, 46(11): 80-81. [5] 何加群. 中国工业强国战略和轴承产业[J]. 轴承, 2015(1): 55-63. He Jiaqun. China's industrial power strategy and bearing industry[J]. Bearing, 2015(1): 55-63. [6] 李晓凯, 信瑞山, 俞占扬, 等. 稀土Ce含量对GCr15SiMn轴承钢冲击性能的影响[J]. 轴承, 2024(3): 58-62, 68. Li Xiaokai, Xin Ruishan, Yu Zhanyang, et al. Effect of rare earth Ce content on impact properties of GCr15SiMn bearing steel[J]. Bearing, 2024(3): 58-62, 68. [7] 薛 冰, 陈世洪, 任永胜, 等. 回火热处理对GCr15轴承钢显微组织和力学性能的影响[J]. 山东理工大学学报(自然科学版), 2021, 35(2): 73-76. Xue Bing, Chen Shihong, Ren Yongsheng, et al. Effect of tempering heat treatment on microstructure and mechanical properties of GCr15 bearing steel[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021, 35(2): 73-76. [8] 陈茂光, 张忠奎. G8Cr15与GCr15轴承钢热处理工艺与性能对比分析[J]. 热加工工艺, 2020, 49(10): 135-138. Chen Maoguang, Zhang Zhongkui. Comparison and analysis of heat treatment process and properties of G8Cr15 and GCr15 bearing steels[J]. Hot Working Technology, 2020, 49(10): 135-138. [9] 杨建虹, 雷建中, 叶健熠, 等. 轴承钢洁净度对轴承疲劳寿命的影响[J]. 轴承, 2001(5): 28-30. [10] 刘震寰, 李勇翰, 刘 洋, 等. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140. Liu Zhenhuan, Li Yonghan, Liu Yang, et al. Carbide evolution behavior of GCr15 bearing steel during aging process[J]. Chinese Journal of Materials Research, 2024, 38(2): 130-140. [11] 张增歧, 常保良, 梁 华, 等. 贝氏体等温淬火工艺在轧机轴承上的应用[J]. 轴承, 1998(2): 24-28. [12] 张增歧, 刘耀中, 樊志强.贝氏体等温淬火及其在轴承上的应用[J]. 材料热处理学报, 2003, 23(1): 57-60. Zhang Zengqi, Liu Yaozhong, Fan Zhiqiang. Austempering and its application in bearing[J]. Transactions of Materials and Heat Treatment, 2003, 23(1): 57-60. [13] 刘耀中, 江 涛. GCr15钢贝氏体淬火及其在铁路轴承上的应用[J]. 轴承, 1994(9): 32-37. [14] Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012, 57: 268-435. [15] 江 涛, 梅亚莉, 雷建中, 等.高碳铬轴承钢贝氏体淬火工艺的应用[J]. 轴承, 1998(3): 15-18. [16] 张福成, 杨志南, 雷建中, 等. 贝氏体钢在轴承中的应用进展[J]. 轴承, 2017(1): 54-64. Zhang Fucheng, Yang Zhinan, Lei Jianzhong, et al. Application progress of bainite steel in bearings[J]. Bearing, 2017(1): 54-64. [17] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite[J]. Materials Science and Technology, 2002, 18: 279-284. [18] Bhadeshia H K D H. Nanostructured bainite[J]. Proceedings of the Royal Society A, 2010, 466: 3-18. [19] Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4): 251-257. [20] Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel[J]. Engineering, 2019, 5(2): 319-328. [21] 尤绍军, 毛玉红, 姜长英. 高碳铬轴承钢马贝复合组织淬火新技术[J]. 轴承, 2012(4): 13-15. [22] 蒋 琪, 陈文雄, 李 源, 等. 碳化物尺寸对低合金超高强钢断裂韧性的影响[J]. 特钢技术, 2024, 30(1): 15-19. Jiang Qi, Chen Wenxiong, Li Yuan, et al. The effect of carbides size on fracture toughness of HSLA[J]. Special Steel Technology, 2024, 30(1): 15-19. [23] 程世超, 杨卯生, 孙世清. 奥氏体化温度对低碳铬钼镍轴承钢晶粒尺寸、碳化物及韧性的影响规律[J]. 河北科技大学学报, 2020, 41(1): 58-65. Cheng Shichao, Yang Maosheng, Sun Shiqing. Effect of austenitizing temperature on grain size, carbides and toughness of low C-Cr-Mo-Ni bearing steel[J]. Journal of Hebei University of Science and Technology, 2020, 41(1): 58-65. [24] Deng X T, Fu T L, Wang Z D, et al. Epsilon carbide precipitation and wear behaviour of low alloy wear resistant steels[J]. Materials Science and Technology, 2016, 32(4): 320-327. |