[1] 张 玺, 张浩然, 解 芳, 等. 热处理对GCr15轴承钢火焰喷涂+感应重熔复合熔涂层组织与性能的影响[J]. 金属热处理, 2023, 48(8): 242-247. Zhang Xi, Zhang Haoran, Xie Fang, et al. Effect of heat treatment on microstructure and properties of coatings on GCr15 bearing steel prepared by flaming spraying+induction remelting technology[J]. Heat Treatment of Metals, 2023, 48(8): 242-247. [2] 李 雄, 林发驹, 杜思敏, 等. 高性能轴承钢的比较分析[J]. 金属热处理, 2021, 46(6): 14-20. Li Xiong, Lin Faju, Du Simin, et al. Comparative analysis of high performance bearing steels[J]. Heat Treatment of Metals, 2021, 46(6): 14-20. [3] Li Y B, Ren W, Yu X, et al. Effect of austempering treatment on microstructure and mechanical properties of M50NiL bearing steel[J]. Metals and Materials International, 2023, 29(11): 3136-3148. [4] 田 勇, 宋超伟, 葛泉江, 等. 航空用高温轴承钢CSS-42L热处理技术及其展望[J]. 轧钢, 2019, 36(6): 1-5. Tian Yong, Song Chaowei, Ge Quanjiang, et al. Status of research and development of heat treatment techniques for heat resistant bearing steel CSS-42L applied for aviation[J]. Steel Rolling, 2019, 36(6): 1-5. [5] Wu Z W, Yang M S, Zhao K Y. Fatigue crack initiation and propagation at high temperature of new-generation bearing steel[J]. Metals, 2020, 11(1): 25. [6] 符云龙, 张 旭, 魏秀军. 轴承钢发展现状及发展趋势[J]. 山西冶金, 2023, 46(11): 80-81. Fu Yunlong, Zhang Xu, Wei Xiujun. Development status and trend of bearing steel[J]. Shanxi Metallurgy, 2023, 46(11): 80-81. [7] Liu H, Hu X, Tang J, et al. A novel method for predicting carburizing and quenching deformation of the gear with the mandrel based on carburizing expansion strain and dynamic thermal boundary conditions of quenching[J]. Surface and Coatings Technology, 2024, 494: 131377. [8] 赵秀华, 张春宝, 王佩璋, 等. 轴承套圈的矫形模压感应淬火[J]. 金属热处理, 2024, 49(8): 156-159. Zhao Xiuhua, Zhang Chunbao, Wang Peizhang, et al. Fixture induction of hardening of bearing ring[J]. Heat Treatment of Metals, 2024, 49(8): 156-159. [9] 于洪军, 陈俊豪, 路 明, 等. 不同回火工艺对15CrNiMo渗碳钢微观组织和力学性能的影响[J]. 热加工工艺, 2024, 53(6): 72-76. Yu Hongjun, Chen Junhao, Lu Ming, et al. Effects of different tempering process on microstructure and mechanical properties of 15CiNiMo carburized steel[J]. Hot Working Technology, 2024, 53(6): 72-76. [10] Zhang N, Yang S M, Sun Q S. Effect of heat treatment processing parameters on the microstructure and properties of low-carbon Cr-Ni-Mo carburizing bearing steels[J]. Materials Science Forum, 2015, 817: 231-237. [11] Ren J, Teng Y, Liu X, et al. In-situ observation and analysis of high temperature behavior of carbides in GCr15 bearing steel by confocal laser scanning microscopy[J]. Journal of Iron and Steel Research International, 2025, 32: 409-417. [12] 王艳辉. 大功率风电轴承用纳米贝氏体钢化学成分设计与组织性能调控[D]. 秦皇岛: 燕山大学, 2017. Wang Yanhui. Chemical component design, microstructure and properties control of nanobainitic steels used for high-power wind power bearing[D]. Qinhuangdao: Yanshan University, 2017. [13] Rohmah M, Hasbi Y M, Citrawati F. Effects of austempering temperature on the corrosion behavior of Fe-Ni bainitic steel with Al addition for railroad tracks[J]. Metal Science and Heat Treatment, 2024, 66: 228-236. [14] Wang L, Sun C, Cao Y, et al. Microstructure evolution under different austenitizing temperatures and its effect on mechanical properties and mechanisms in a newly high aluminum bearing steel[J]. Journal of Materials Research and Technology, 2024, 30: 9481-9493. [15] Liu T Y, Xia Y F, Li Y H, et al. The combined effects of carbides and martensite blocks heterogeneity on the fatigue life scatter in bearing steel[J]. Materials Science and Engineering A, 2024, 915: 147277. [16] 董 瀚, 廉心桐, 胡春东, 等. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582. Dong Han, Lian Xintong, Hu Chundong, et al. High performance steels: The scenario of theory and technology[J]. Acta Metallurgica Sinica, 2020, 56(4): 558-582. [17] Shen M, Yan C, Bai Z, et al. Comparative study on wear and fatigue behaviors of rail steels with varying levels of martensite and bainite under rolling-sliding contact conditions[J]. Wear, 2025, 560-561: 205594. [18] Zhang Z, Wu Z, Yuan Y, et al. Microstructure evolution and mechanical properties of high-temperature carburized 18Cr2Ni4WA steel[J]. Materials, 2024, 17(19): 4820. [19] 周 路, 帅美荣, 田 奇, 等. 12Cr13马氏体不锈钢热变形行为及微观组织分析[J]. 塑性工程学报, 2024, 31(9): 160-171. Zhou Lu, Shuai Meirong, Tian Qi, et al. Thermal deformation behavior and microstructural analysis of 12Cr13 martensitic stainless steel[J]. Journal of Plasticity Engineering, 2024, 31(9): 160-171. |