[1] Wang W, Liu H J, Zhu CC, et al. Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multiaxial fatigue criteria[J]. International Journal of Mechanical Sciences, 2019, 151: 263-273. [2] Zhang B Y, Liu H J, Bai H Y, et al. Ratchetting-multiaxial fatigue damage analysis in gear rolling contact considering tooth surface roughness[J]. Wear, 2019, 428-429: 137-146. [3] Chu G C, Hu F Z, Jin X J, et al. Fatigue properties improvement of low-carbon alloy axle steel by induction hardening and shot peening: A prospective comparison[J]. Acta Metallurgica Sinica(English Letters), 2022, 35: 1343-1356. [4] Amanov A, Karimbaev R. Improvement in frictional and fatigue performances of AISI 4150H steel by dual ultrasonic nanocrystal surface modification for ball screw applications[J]. Tribology International, 2021, 161: 107092. [5] Karimbaev R, Pyun Y S, Maleki E, et al. An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification[J]. Materials Science and Engineering A, 2020, 791: 139752. [6] Liu Y, Wang M Q, Shi J, et al. Fatigue properties of two case hardening steels after carburization[J]. International Journal of Fatigue, 2009, 31(2): 292-299. [7] Tokaji K, Kohyama K, Akita M. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing[J]. International Journal of Fatigue, 2004, 26(5): 543-551. [8] Zhang J W, Li H, Yang B, et al. Fatigue properties and fatigue strength evaluation of railway axle steel: Effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379. [9] Hassan A M, Momani A M S. Further improvements in some properties of shot peened components using the burnishing process[J]. International Journal of Machine Tools and Manufacture, 2000, 40(12): 1775-1786. [10] Wang J T, Qu S G, Shao H T, et al. Ultra-high fatigue property and fracture mechanism of modified 20CrMoH steel by gas carburizing technology combined with shot peening treatment[J]. International Journal of Fatigue, 2022, 165: 107221. [11] Zhang Y L, Wang J K, Wu L J, et al. Surface integrity and bending fatigue behavior of aeronautic gear steel under combined carburized treatment and shot peening[J]. International Journal of Fatigue, 2023, 169: 107488. [12] 杨红兵, 邵子恒, 颜 莹, 等. 表面渗碳高强轴承钢滚动接触疲劳行为研究[J]. 材料导报, 2025, 39(12): 24050074. Yang Hongbing, Shao Ziheng, Yan Ying, et al. Study on the rolling contact fatigue behaviors of surface carburized high-strength bearing steel[J]. Materials Reports, 2025, 39(12): 24050074. [13] Kovaci H, Bozkurt Y B, Yetim A F, et al. The effect of surface plastic deformation produced by shot peening on corrosion behavior of a low-alloy steel[J]. Surface and Coatings Technology, 2019, 360: 78-86. [14] Hassani-Gangaraj S M, Moridi A, Guagliano M, et al. Nitriding duration reduction without sacrificing mechanical characteristics and fatigue behavior: The beneficial effect of surface nano-crystallization by prior severe shot peening[J]. Materials and Design, 2014, 55: 492-498. [15] 彭大暑. 金属塑性加工原理[M]. 长沙: 中南大学出版社, 2014. [16] 王彦彬, 王毛球, 黎振华, 等. 晶粒尺寸对表面渗碳齿轮钢疲劳极限的影响[J]. 钢铁研究学报, 2010, 22(11): 23-27. Wang Yanbin, Wang Maoqiu, Li Zhenhua, et al. Effect of grain size on fatigue limit of case-hardened steels[J]. Journal of Iron and Steel Research, 2010, 22(11): 23-27. [17] Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of vacuum carburized 20Cr2Ni4 steel with different case depths[J]. Journal of Materials Shaping Technology, 2019, 28(6): 3413-3422. [18] 刘天祥. BG800轴承钢耐磨性能与疲劳行为的研究[D]. 昆明: 昆明理工大学, 2021. [19] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions[M]. UK: Elsevier Science, 2002. [20] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. International Journal of Fatigue, 1989, 11(5): 291-298. |