[1] 国家制造强国建设战略咨询委员会, 中国工程院战略咨询中心. 《中国制造2025》重点领域技术创新绿皮书[M]. 北京: 电子工业出版社, 2018. [2] 杨 平, 罗海文. 改进型M50高温用轴承钢的设计与研发[J]. 金属热处理, 2018, 43(8): 1-7. Yang Ping, Luo Haiwen. Design and development of improved M50 high-temperature bearing steel[J]. Heat Treatment of Metals, 2018, 43(8): 1-7. [3] Feng Q, Li J, Zeng Y, et al. Effect of Cr atom doping on the carbide stability and mechanical properties of high carbon chromium bearing steels[J]. Journal of Materials Research and Technology, 2023, 23: 5710-5722. [4] Yang L, Xue W, Gao S, et al. Rolling contact fatigue behaviour of M50 bearing steel with rare earth addition[J]. International Journal of Fatigue, 2023, 177: 107940. [5] Chong X, Jiang Y, Feng J. Exploring the intrinsic ductile metastable Fe-C compounds: Complex chemical bonds, anisotropic elasticity and variable thermal expansion[J]. Journal of Alloys and Compounds, 2018, 745: 196-211. [6] Long X, Zhang F, Yang Z, et al. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels[J]. Materials Science and Engineering A, 2018, 715: 10-16. [7] 谢亚飞, 侯廷平, 于 涛, 等. 合金碳化物M23C6对CLAM钢晶界拉伸性能的影响机理研究[J]. 武汉科技大学学报, 2023, 46(6): 409-417. Xie Yafei, Hou Tingping, Yu Tao, et al. Mechanism of alloy carbide M23C6 influencing grain boundary tensile properties of CLAM steel[J]. Journal of Wuhan University of Science and Technology, 2023, 46(6): 409-417. [8] 袁志钟. 金属材料学[M]. 3版. 北京: 化学工业出版社, 2019. [9] 冯路路, 吴开明, 乔文玮, 等. 轴承钢珠光体球化的研究现状及发展趋势[J]. 中国冶金, 2020, 30(9): 110-118. Feng Lulu, Wu Kaiming, Qiao Wenwei, et al. Research status and developing tendency of bearing steel spheroidization of pearlite[J]. China Metallurgy, 2020, 30(9): 110-118. [10] 申丽娟, 麻永林, 谢港生, 等. 脉冲磁场对GCr15轴承钢网状碳化物的影响[J]. 材料热处理学报, 2024, 45(5): 114-121. Shen Lijuan, Ma Yonglin, Xie Gangsheng, et al. Effect of pulsed magnetic field on network carbides in GCr15 bearing steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(5): 114-121. [11] 李闪闪, 陈 云, 巩桐兆, 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034. Li Shanshan, Chen Yun, Gong Tongzhao, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel[J]. Acta Metallurgica Sinica, 2022, 58(8): 1024-1034. [12] Wang F, Qian D, Hu A L, et al. Effect of high magnetic field on the microstructure evolution and mechanical properties of M50 bearing steel during tempering[J]. Materials Science and Engineering A, 2020, 771: 138623. [13] Qiu N, Yan J, Zuo X. A novel strategy for hierarchical structure in multicomponent nano-precipitated steels by high magnetic field aging[J]. Scripta Materialia, 2021, 191: 137-142. [14] Chen R, Kong H J, Luan J H, et al. Effect of external applied magnetic field on microstructures and mechanical properties of laser welding joint of medium-Mn nanostructured steel[J]. Materials Science and Engineering A, 2020, 792: 139787. [15] 镇锦煌, 侯廷平, 刘杨妮, 等. 强磁场下贝氏体相变的热力学机制研究[J]. 武汉科技大学学报, 2023, 46(2): 81-86. Zhen Jinhuang, Hou Tingping, Liu Yangni, et al. Thermodynamic mechanism of bainite transformation under strong magnetic field[J]. Journal of Wuhan University of Science and Technology, 2023, 46(2): 81-86. [16] 谢港生. 脉冲磁场热处理对GCr15钢组织与性能的影响[D]. 包头: 内蒙古科技大学, 2023. [17] Kakeshita T, Shimizu K, Funada S, et al. Composition dependence of magnetic field-induced martensitic transformations in Fe-Ni alloys[J]. Acta Metallurgica, 1985, 33(8): 1381-1389. [18] Wu G H, Hou T P, Wu K M, et al. Influence of high magnetic field on carbides and the dislocation density during tempering of high chromium-containing steel[J]. Journal of Magnetism and Magnetic Materials, 2019, 479: 43-49. [19] Xia Z X, Zhang C, Lan H, et al. Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels[J]. Materials Letters, 2011, 65(6): 937-939. [20] Fang C M, Huis van M A, Sluiter M H F, et al. Stability, structure and electronic properties of γ-Fe23C6 from first-principles theory[J]. Acta Materialia, 2010, 58: 2968-2977. [21] Hou T P, Wu K M. Alloy carbide precipitation in tempered 2.25Cr-Mo steel under high magnetic field[J]. Acta Materialia, 2013, 61(6): 2016-2024. [22] Zhou Z N, Wu K M. Molybdenum carbide precipitation in an Fe-C-Mo alloy under a high magnetic field[J]. Scripta Materialia, 2009, 61(7): 670-673. [23] Zhang D, Hou T, Liang X, et al. Insights into the assessment of the magnetic-field-induced precipitation behavior of alloy carbides M7C3 in steels[J]. Materials and Design, 2022, 221: 111023. [24] Hou T P, Wu K M. The effect of high magnetic field on metal solute substitution in M23C6 alloy carbide[J]. Scripta Materialia, 2012, 67(6): 609-612. [25] 温 斌, 姚 山, 李廷举, 等. 连铸坯中缩敏感系数的研究[J]. 铸造技术, 2004, 25(9): 673-675. Wen Bin, Yao Shan, Li Tingju, et al. Study on the centerline shrinkage sensitivity coefficient of slab ingot[J]. Foundry Technology, 2004, 25(9): 673-675. [26] 朱苗勇, 林启勇. 连铸坯的轻压下技术[J]. 鞍钢技术, 2004(1): 1-6. Zhu Miaoyong, Lin Qiyong. Light reduction technology for continuous casting slab[J]. Angang Technology, 2004(1): 1-6. [27] Flemings M C. Our understanding of macrosegregation: Past and present[J]. ISIJ International, 2000, 40(9): 833-841. [28] Li X, Gagnoud A, Fautrelle Y, et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Materialia, 2012, 60(8): 3321-3332. [29] Li X, Gagnoud A, Ren Z, et al. Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field[J]. Acta Materialia, 2009, 57(7): 2180-2197. [30] Harada H, Toh T, Ishii T, et al. Effect of magnetic field conditions on the electromagnetic braking efficiency[J]. ISIJ International, 2001, 41(10): 1236-1244. [31] 侯 渊, 任忠鸣, 王 江, 等. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808. Hou Yuan, Ren Zhongming, Wang Jiang, et al. Effect of longitudinal static magnetic field on the columnar to equiaxed transition in directionally solidified GCr15 bearing steel[J]. Acta Metallurgica Sinica, 2018, 54(5): 801-808. [32] Dold P, Szofran F R, Benz K W. Thermoelectromagnetic convection in vertical Bridgman grown germanium-silicon[J]. Journal of Crystal Growth, 2006, 291(1): 1-7. [33] Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field[J]. Acta Materialia, 1998, 46(11): 4067-4079. [34] 黄大伟. 电磁搅拌作用下轴承钢凝固组织形态演变的研究[D]. 沈阳: 东北大学, 2011. [35] Sun Z, Xia Z, Zhang M, et al. The effect of alternative magnetic field on solidification structure improvement and primary carbide refinement in M50 ingots produced by vacuum arc remelting[J]. Journal of Materials Research and Technology, 2024, 30: 5219-5231. [36] Zhong Y B, Qiang L I, Fang Y P, et al. Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J]. Materials Science and Engineering A, 2016, 660: 118-126. [37] Li C, Li Z, Ren J, et al. Microstructure and properties of 1.0C-1.5Cr bearing steel in processes of hot rolling, spheroidization, quenching, and tempering[J]. Steel Research International, 2019, 90: 1800470. [38] 许 磊, 陈 瑜, 韩彦光, 等. GCr15轴承钢球化退火研究现状[J]. 热加工工艺, 2013, 42(14): 11-14. Xu Lei, Chen Yu, Han Yanguang, et al. Recent research on spheroidization of GCr15 bearing steel[J]. Hot Working Technology, 2013, 42(14): 11-14. [39] 邓素怀, 严春莲, 张慧峰, 等. 球化处理对轴承钢碳化物网的影响[J]. 热加工工艺, 2017, 46(12): 218-221. Deng Suhuai, Yan Chunlian, Zhang Huifeng, et al. Effect of spheroidizing on carbide network in bearing steel[J]. Hot Working Technology, 2017, 46(12): 218-221. [40] Yin H, Wu Y, Liu D, et al. Rolling contact fatigue-related microstructural alterations in bearing steels: A brief review[J]. Metals, 2022, 12(6): 910. [41] Hao J, Zhang H, Zhang X, et al. Accelerated carbon atoms diffusion in bearing steel using electropulsing to reduce spheroidization processing time and improve microstructure uniformity[J]. Steel Research International, 2020, 91(7): 2000041. [42] 谢港生, 邢淑清, 申丽娟, 等. 脉冲磁场对GCr15钢球化退火过程中碳化物析出的影响[J]. 金属热处理, 2023, 48(4): 118-123. Xie Gangsheng, Xing Shuqing, Shen Lijuan, et al. Effect of pulsed magnetic field on precipitation of carbides during spheroidizing annealing of GCr15 steel[J]. Heat Treatment of Metals, 2023, 48(4): 118-123. [43] 申丽娟, 谢港生, 麻永林, 等. 电磁能条件下球化退火过程中 GCr15 轴承钢碳化物的溶解行为[J]. 金属热处理, 2022, 47(8): 40-45. Shen Lijuan, Xie Gangsheng, Ma Yonglin, et al. Carbide dissolution behavior in GCr15 bearing steel during spheroidization annealing under condition of electromagnetic energy[J]. Heat Treatment of Metals, 2022, 47(8): 40-45. [44] Li Y, Li C, Chen S, et al. Effect of spheroidizing annealing in combination with alternating magnetic field on microstructure and mechanical properties of GCr15 bearing steel[J]. ISIJ International, 2022, 62(6): 1275-1282. [45] Song Y, Yu C, Miao X, et al. Tribological performance improvement of bearing steel GCr15 by an alternating magnetic treatment[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 957-964. [46] 刘雪华. 减小GCr15轴承套圈热处理变形的工艺研究[J]. 热加工工艺, 2007, 36(10): 62-64. Liu Xuehua. Study on process for decreasing heat treatment distortion of GCr15 bear ring[J]. Hot Working Technology, 2007, 36(10): 62-64. [47] Mukherjee S. Boundary Element Methods in Creep and Fracture[M]. London, New Jersey: Applied Science Publishers, 1982. [48] 徐祖耀. 马氏体相变的分类[J]. 金属学报, 1997, 33(1): 45-53. Xu Zuyao. Classification of the martensitic transformations[J]. Acta Metallurgica Sinica, 1997, 33(1): 45-53. [49] 陈 龙. 强磁场和回火温度对高铬钢碳化物析出和位错密度的影响[D]. 武汉: 武汉科技大学, 2018. [50] Sadovskii V, Rodigin N, Smirnov L, et al. The question of the influence of magnetic field on martensitic transformation in steel[J]. Fizika Metallov I Metallovedenie, 1961, 12: 302-304. [51] Xie G, Shen L, Xing S, et al. Effect of pulsed magnetic field on quenched heat treatment of GCr15 steel[J]. JOM, 2023, 75(7): 2256-2264. [52] Li Y C, Chen S Y, Zhu F H, et al. Effect of high magnetic field in combination with high-temperature tempering on microstructures and mechanical properties of GCr15 bearing steel[J]. Metals, 2022, 12(8): 1293. [53] Qian C, Li K, Rui S S, et al. Magnetic induced re-dissolution and microstructure modifications on mechanical properties of Cr4Mo4V steel subjected to pulsed magnetic treatment[J]. Journal of Alloys and Compounds, 2021, 881: 160471. [54] 张 东, 侯廷平, 郑一航, 等. 强磁场下钢中析出相演变规律研究进展[J]. 铸造技术, 2022, 43(8): 615-624. Zhang Dong, Hou Tingping, Zheng Yihang, et al. Research progress on evolution of precipitate phases in steel under high magnetic field[J]. Foundry Technology, 2022, 43(8): 615-624. [55] Zhu F, Jiang D, Sun S, et al. Effect of alternating magnetic field on microstructure evolution and mechanical properties of M50 bearing steel during tempering process[J]. Journal of Materials Research and Technology, 2023, 26: 4516-4525. |