[1] 李 辉. 高碳铬轴承钢中碳化物演变及贝氏体相变行为[D]. 北京: 北京科技大学, 2015. Li Hui. Carbide evolution and bainite transformation behavior of high-carbon-chromium bearing steel[D]. Beijing: University of Science and Technology Beijing, 2015. [2] Wang Y H, Kang J M, Peng Y, et al. Hall-Petch strengthening in Fe-34.5Mn-0.04C steel cold-rolled, partially recrystallized and fully recrystallized[J]. Scripta Materialia, 2018, 155: 41-45. [3] 李 伟, 陈文琳, 吴 跃, 等. 42CrMo钢加热时奥氏体晶粒长大演化规律[J]. 材料热处理学报, 2015, 36(1): 104-108. Li Wei, Chen Wenlin, Wu Yue, et al. Austenite grain growth behaviour of 42CrMo steel during heating[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 104-108. [4] Wang L, Qian D, Guo J, et al. Austenite grain growth behavior of AISI 4140 alloy steel[J]. Advances in Mechanical Engineering, 2019, 5(4): 88-92. [5] 杨晓雅. 核电用316LN奥氏体不锈钢热变形组织演变与断裂行为[D]. 北京: 北京科技大学, 2016. Yang Xiaoya. Microstructure evolution and fracture behavior of 316LN austenite stainless steel for nuclear power plant during hot deformation[D]. Beijing: University of Science and Technology Beijing, 2016. [6] 张 兵, 岳 磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021, 50(1): 212-222. Zhang Bing, Yue Lei, Chen Hanfeng, et al. Comparison of thermal deformation behavior and three constitutive models of as-cast GH4169 alloy[J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222. [7] Long J C, Deng L, Jin J S, et al. Enhancing constitutive description and workability characterization of Mg alloy during hot deformation using machine learning-based Arrhenius-type model[J]. Journal of Magnesium and Alloys, 2024, 12(7): 3003-3023. [8] Cao R, Wang W, Ma S, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347. [9] 刘庆琦, 卢 晔, 张翼飞, 等. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308. Liu Qingqi, Lu Ye, Zhang Yifei, et al. Thermal deformation behavior of Al19.3Co15Cr15Ni50.7 high entropy alloy[J]. Acta Metallurgica Sinica, 2021, 57(10): 1299-1308. [10] 蒋 乔, 赵明杰, 张 健, 等. Aermet100钢高温保温过程奥氏体晶粒演化的原位实验研究[J]. 锻压技术, 2023, 48(8): 261-267. Jiang Qiao, Zhao Mingjie, Zhang Jian, et al. In-situ experimental investigation on austenite grain evolution in Aermet100 steel during high temperature holding process[J]. Forging and Stamping Technology, 2023, 48(8): 261-267. [11] 杨 劼, 任慧平, 刘宗昌. 15Cr12CuSiMoMn钢的奥氏体晶粒长大动力学[J]. 金属热处理, 2022, 47(2): 53-58. Yang Jie, Ren Huiping, Liu Zongchang. Kinetics of austenite grain growth of 15Cr12CuSiMoMn steel[J]. Heat Treatment of Metals, 2022, 47(2): 53-58. [12] 刘利刚, 张超凡, 刘 娣, 等. 新型冷轧辊用高合金锻钢的奥氏体晶粒长大规律[J]. 材料热处理学报, 2017, 38(11): 65-70. Liu Ligang, Zhang Chaofan, Liu Di, et al. Austenite grain growth behavior of a new high alloy forged steel for cold working rolls[J]. Transactions of Materials and Heat Treatment, 2017, 38(11): 65-70. [13] 党淑娥, 宿展宁, 刘志龙, 等. 30Cr2Ni4MoV钢铸态加热过程中奥氏体晶粒的长大行为[J]. 材料研究学报, 2014, 28(9): 675-681. Dang Shue, Su Zhanning, Liu Zhilong, et al. Austenite grain growth behavior during heating process of as-cast 30Cr2Ni4MoV steel[J]. Transactions of Materials and Heat Treatment, 2014, 28(9): 675-681. [14] 张连有, 赵 卓, 车 安, 等. T90高碳帘线钢加热过程奥氏体晶粒长大规律与数学模型[J]. 金属热处理, 2023, 48(8): 118-123. Zhang Lianyou, Zhao Zhuo, Che An, et al. Growing rule and mathematical model of austenite grain in T90 high carbon cord steel[J]. Heat Treatment of Metals, 2023, 48(8): 118-123. [15] 张 琪, 王厚昕, 朱 敏, 等. Nb微合金化高碳钢奥氏体晶粒长大原位观察[J]. 钢铁研究学报, 2022, 34(8): 840-847. Zhang Qi, Wang Houxin, Zhu Min, et al. In-situ observation on austenite grain growth of a Nb microalloyed high-carbon steel[J]. Journal of Iron and Steel Research, 2022, 34(8): 840-847. [16] 曹云飞, 余 伟, 刘 敏, 等. 38MnSiVS非调质钢奥氏体晶粒长大模型[J]. 钢铁, 2020, 55(5): 103-108. Cao Yunfei, Yu Wei, Liu Min, et al. Austenite grain growth model of 38MnSiVS bearing microalloyed forging steel[J]. Iron and Steel, 2020, 55(5): 103-108. [17] Liu J, Liang B, Zhang J, et al. Grain growth kinetics of 0.65Ca0.61La0.26TiO3-0.35Sm(Mg0.5Ti0.5)O3 dielectric ceramic[J]. Materials, 2020, 13(17): 3905. [18] 黄顺喆, 厉 勇, 王春旭, 等. 高强渗碳钢高温热变形的本构方程[J]. 材料热处理学报, 2014, 35(10): 210-217. Huang Shunzhe, Li Yong, Wang Chunxu, et al. Constitutive equations of a high-strength carburizing steel during high temperature thermal deformation[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 210-217. [19] Qi Q, Li M, Duan Y, et al. Effect of solution heat treatment on the microstructure and microhardness of 7050 aluminum alloy[J]. Metals, 2023, 13(11): 1819. [20] 薛 莉, 张立文, 丁浩晨, 等. 20CrMnTi钢和20钢奥氏体晶粒长大行为对比[J]. 金属热处理, 2023, 48(10): 45-49. Xue Li, Zhang Liwen, Ding Haochen, et al. Comparison of austenite grain growth behavior of 20CrMnTi steel and 20 steel[J]. Heat Treatment of Metals, 2023, 48(10): 45-49. [21] 万 莉, 陆书萌, 郑善举, 等. SA508Gr.4N钢的奥氏体化转变与晶粒长大动力学[J]. 材料热处理学报, 2022, 43(5): 186-194. Wan Li, Lu Shumeng, Zheng Shanju, et al. Austenitizing transformation and grain growth kinetics of SA508Gr.4N steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(5): 186-194. [22] 彭 则, 李萌蘖, 卜恒勇, 等. 42CrMo钢加热过程中的奥氏体晶粒尺寸演变[J]. 金属热处理, 2021, 46(5): 25-31. Peng Ze, Li Mengnie, Pu Hengyong, et al. Evolution of austenite grain size of 42CrMo steel during heating[J]. Heat Treatment of Metals, 2021, 46(5): 25-31. [23] Devadas C, Samarasekera I V, Hawbolt E B. The thermal and metallurgical state of steel strip during hot rolling: Part III. Microstructural evolution[J]. Metallurgical Transactions A, 1991, 22: 335-349. [24] Anelli E. Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars[J]. ISIJ International, 1992, 32(3): 440-449. |