[1] Zhou L, Tang G, Ma X, et al. Relationship between microstructure and mechanical properties of M50 ultra-high strength steel via quenching-partitioning-tempering process[J]. Materials Characterization, 2018, 146: 258-266. [2] Su Y, Wang J X, Yu X F, et al. Effect of deep tempering on microstructure and hardness of carburized M50NiL steel[J]. Journal of Materials Research and Technology, 2021, 14: 1080-1088. [3] 信振飞. Cr、Ni含量对高强耐热齿轮轴承钢强韧性影响研究[D]. 昆明: 昆明理工大学, 2023. [4] Li Y, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species[J]. Materials and Design, 2015, 82: 56-63. [5] Zhang Y, Zhan D, Qi X, et al. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel[J]. Journal of Materials Research and Technology, 2019, 35(7): 1240-1249. [6] Zeng T Y, Li W, Wang N M, et al. Microstructural evolution during tempering and intrinsic strengthening mechanisms in a low carbon martensitic stainless bearing steel[J]. Materials Science and Engineering A, 2022, 836: 142736. [7] Chen X F, Zheng L J, Feng S C, et al. Tempering influence on microstructural evolution and mechanical properties in a core of CSS-42L bearing steel[J]. Materials Science and Engineering A, 2022, 861: 144233. [8] Zhou P W, Yang W L, Wu Y C, et al. Characterization of microstructural evolution with pre-strain in BG801 bearing steel: Grain, carbides, retained austenite and martensite[J]. Vacuum, 2023, 216: 112354. [9] 李彬周. 20CrNi2Mo钢热轧过程中贝氏体组织控制[D]. 沈阳: 东北大学, 2015. [10] Shi R J, Wang Z D, Qiao L J, et al. Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel[J]. Journal of Materials Science & Technology, 2019, 35: 1940-1950. [11] 殷军伟. 碳含量对Cr-Mo-V系热作模具钢高温性能的影响研究[D]. 昆明: 昆明理工大学, 2020. |