[1] 郎雪琴, 代 琨. 亚温淬火回火的30CrMoA钢的显微组织和力学性能[J]. 热处理, 2023, 38(4): 44-45. Lang Xueqin, Dai Kun. Microstructure and mechanical properties of 30CrMoA steel after sub-critical quenching and tempering[J]. Heat Treatment, 2023, 38(4): 44-45. [2] 刘 勇, 高文娟. 35CrMoA钢力学性能不合格原因分析[J]. 山东冶金, 2018, 40(1): 24-26. Liu Yong, Gao Wenjuan. Cause analysis of failure of mechanical properties of 35CrMoA steel[J]. Shandong Metallurgy, 2018, 40(1): 24-26. [3] 李丰德. 35CrMoA圆钢热顶锻开裂原因分析[J]. 物理测试, 2023, 41(3): 28-32. Li Fengde. Cause analysis on upset forging cracking of 35CrMoA round steel[J]. Physics Examination and Testing, 2023, 41(3): 28-32. [4] 黄 玲, 向 勇, 曾麟芳, 等. 不锈钢覆层抽油杆研发及其应用前景[J]. 金属材料与冶金工程, 2023, 51(3): 18-21. Huang Ling, Xiang Yong, Zeng Linfang, et al. Development and application prospect of stainless steel clad sucker rod[J]. Metal Materials and Metallurgy Engineering, 2023, 51(3): 18-21. [5] 倪彤元, 杜 鑫, 莫云波, 等. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 79-87. Ni Tongyuan, Du Xin, Mo Yunbo, et al. Prediction and evaluation of HVFAC tensile properties based on ANN[J]. Materials Reports, 2024, 38(10): 79-87. [6] Huang Wenwen, Lu Miaomiao, Zeng Yuxuan, et al. Technical and tactical diagnosis model of table tennis matches based on BP neural network[J]. BMC Sports Science, Medicine Rehabilitation, 2021, 13(1): 54-54. [7] 叶 梯, 冯 灏, 李 果. 基于BP神经网络的复合材料螺栓连接强度预测[J]. 复合材料科学与工程, 2025(1): 29-34, 41. Ye Ti, Feng Hao, Li Guo. Strength prediction of composite material bolted joints based on BP neural networks[J]. Composites Science and Engineering, 2025(1): 29-34, 41. [8] 娄淑梅, 李一明, 李 鑫, 等. 基于BP神经网络和Arrhenius本构模型的石墨烯/7075复合材料热变形行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1237-1245. Lou Shumei, Li Yiming, Li Xin, et al. Thermal deformation behavior of graphene nanosheets reinforced 7075Al based on BP neural network and Arrhenius constitutive equation[J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1237-1245. [9] 董文文, 尹延国, 张国涛, 等. 基于BP神经网络的粉末冶金铜基滑动轴承材料磨损量预测[J]. 轴承, 2021(2): 52-56. Dong Wenwen, Yin Yanguo, Zhang Guotao, et al. Wear volume prediction of powder metallurgy copper-based sliding bearing material based on BP neural network[J]. Bearing, 2021(2): 52-56. [10] 温 然, 金志雄. 基于BP神经网络的齿轮材料热处理工艺优化[J]. 热加工工艺, 2018, 47(8): 175-178. Wen Ran, Jin Zhixiong. Optimization of heat treatment process for gear materials based on BP neural network[J]. Hot Working Technology, 2018, 47(8): 175-178. [11] 闫楚良, 郝云霄, 刘克格. 基于遗传算法优化的BP神经网络的材料疲劳寿命预测[J]. 吉林大学学报(工学版), 2014, 44(6): 1710-1715. Yan Chuliang, Hao Yunxiao, Liu Kege. Fatigue life prediction of materials based on BP neural networks optimized by genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1710-1715. [12] 周惦武, 乔小杰, 张丽娟, 等. 镀锌钢/6016铝合金激光焊的BP神经网络工艺优化及组织和性能[J]. 中国有色金属学报, 2014, 24(3): 678-688. Zhou Dianwu, Qiao Xiaojie, Zhang Lijuan, et al. Parameters optimization of laser welding process of galvanized steel and 6016 aluminum alloy based on BP neural network and its microstructure and mechanical properties[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(3): 678-688. [13] Teng Haihao, Xia Yufeng, Sun Tao, et al. Flow stress prediction of near-β Ti-55511 alloy during isothermal compression based on corrected Arrhenius model with material parameter evolution and BP-ANN model[J]. Rare Metal Materials and Engineering, 2023, 52(3): 823-833. [14] 张乃千, 魏明霞, 赵 君, 等. GA-BP神经网络在AgCuNi电接触材料的性能预测研究[J]. 贵金属, 2022, 43(S1): 15-21. Zhang Naiqian, Wei Mingxia, Zhao Jun, et al. Optimal design of AgCuNi series electrical contact materials based on GA-BP neural network[J]. Precious Metals, 2022, 43(S1): 15-21. [15] 霍冠良, 宁志华. 基于BP神经网络的含褶皱复合材料强度预测[J]. 南京航空航天大学学报, 2020, 52(3): 460-467. Huo Guanliang, Ning Zhihua. Strength prediction of laminates containing embedded fiber wrinkles using bp neural networks[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(3): 460-467. [16] 王 晶, 李维雅, 赵春旺. 时效处理对Ni-Ti-La合金微结构、相变及力学性能的影响[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(1): 18-22. Wang Jing, Li Weiya, Zhao Chunwang. Effect of aging treatment on microstructure, phase transformation and mechanical properties of Ni-Ti-La alloy[J]. Journal of Inner Mongolia University of Technology(Natural Science Edition), 2024, 43(1): 18-22. [17] 李超群, 赵千水, 张凯伦. 应用JMatPro软件对重载齿轮用钢17CrNiMo6的分析[J]. 金属世界, 2024(3): 25-28. Li Chaoqun, Zhao Qianshui, Zhang Kailun. Analysis of 17CrNiMo6 steel for overloaded gear using JMatPro software[J]. Metal World, 2024(3): 25-28. [18] 凌文丹, 袁庆龙, 王海瑞. 35CrMoA钢亚温淬火强韧性研究[J]. 材料导报, 2010, 24(S2): 552-555. Ling Wendan, Yuan Qinglong, Wang Hairui. Study on the strength and toughness of 35CrMoA steel by intercritical hardening[J]. Materials Reports, 2010, 24(S2): 552-555. [19] 李旭辉. 亚温淬火对U20MnV钢轨钢力学性能影响及相关数值模拟研究[D]. 北京: 北京交通大学, 2023. Li Xuhui. Effect of intercritical quenching on mechanical properties of U20MnV rail steel and related numerical simulation research[D]. Beijing: Beijing Jiaotong University, 2023. [20] 朱必武, 蒋 昊, 刘 筱, 等. 基于改进PSO-BP神经网络预测中高应变速率轧制AZ31镁合金板的抗拉强度[J/OL]. 中国有色金属学报, 2024. DOI:10.11817/j.ysxb.1004.0609.2023-44555. Zhu Biwu, Jiang Hao, Liu Xiao, et al. Prediction of the tensile strength of AZ31 magnesium alloy sheet rolled at medium-high strain rate based on improved PSO-BP neural network[J]. The Chinese Journal of Nonferrous Metals, 2024. DOI:10.11817/j.ysxb.1004.0609.2023-44555. [21] 姬 帅, 张佳乐, 王海丽. BP神经网络预测冲击强化45钢的中温热稳定性[J]. 热加工工艺, 2024, 53(23): 159-164. Ji Shuai, Zhang Jiale, Wang Haili. Prediction of medium thermal stability of 45 steel after impact strengthening with BP artificial neural network[J]. Hot Working Technology, 2024, 53(23): 159-164. [22] 杨 强, 颜宗辉, 杜秀举, 等. 基于ANN架构的新能源发电预测模型的研究[J]. 电气应用, 2024, 43(2): 76-82. Yang Qiang, Yan Zonghui, Du Xiuju, et al. Research on the prediction model of new energy power generation based on ANN architecture[J]. Electrotechnical Application, 2024, 43(2): 76-82. [23] Liao Hengcheng, Gao Yuan, Wang Qigui, et al. Development of viscosity model for aluminum alloys using BP neural network[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 2978-2985. [24] 范 勇, 裴 勇, 杨广栋, 等. 基于改进PSO-BP神经网络的爆破振动速度峰值预测[J]. 振动与冲击, 2022, 41(16): 194-203, 302. Fan Yong, Pei Yong, Yang Guangdong, et al. Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J]. Journal of Vibration and Shock, 2022, 41(16): 194-203, 302. [25] 陈国强, 申正义, 孙 利, 等. 基于BP神经网络优化遗传算法的智能座舱感性意象预测[J]. 汽车工程, 2023, 45(8): 1479-1488. Chen Guoqiang, Shen Zhengyi, Sun Li, et al. Intelligent cockpit perceptual image prediction based on BP neural network optimization genetic algorithm[J]. Automotive Engineering, 2023, 45(8): 1479-1488. [26] 胡 昂, 吴 润, 李忠波, 等. 亚温淬火对低合金耐磨钢增韧及性能的影响[J]. 金属热处理, 2024, 49(3): 22-27. Hu Ang, Wu Run, Li Zhongbo, et al. Effect of intercritical quenching on toughening and properties of low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2024, 49(3): 22-27. |