[1] 袁志钟, 戴起勋. 金属材料学[M]. 北京: 化学工业出版社, 2018. [2] 庞亚龙, 车洪艳, 梁 晨, 等. 淬火工艺对M390刀具钢力学性能的影响[J]. 材料热处理学报, 2022, 43(8): 101-109. Pang Yalong, Che Hongyan, Liang Chen. et al. Influence of quenching process on mechanical properties of M390 tool steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(8): 101-109. [3] Mesa D H, Toro A, Sinatora A, et al. The effect of testing temperature on corrosion-erosion resistance of martensitic stainless steels[J]. Wear, 2003, 255(1): 139-145. [4] 裴新军, 程 格, 潘新宇, 等. 刀剪用马氏体不锈钢的现状和发展[J]. 热处理, 2020, 35(4): 1-6. Pei Xinjun, Cheng Ge, Pan Xinyu, et al. Current situation and development of martensitic stainless steel for knifes and scissors[J]. Heat Treatment, 2020, 35(4): 1-6. [5] 王铁军, 杨 博, 梁 晨, 等. 退火温度对热轧态M390组织与性能的影响[J]. 材料导报, 2020, 34(12): 12122-12126. Wang Tiejun, Yang Bo, Liang Chen, et al. Effect of annealing temperature on microstructure and mechanical property of hot-rolled M390[J]. Materials Reports, 2020, 34(12): 12122-12126. [6] 练容彪, 宋新莉, 马玉喜, 等. 合金元素对低合金耐磨钢组织及性能的影响[J]. 金属热处理, 2016, 41(12): 47-51. Lian Rongbiao, Song Xinli, Ma Yuxi, et al. Influence of alloy elements on microstructure and mechanical properties of low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2016, 41(12): 47-51. [7] 胡镇华, 李 炼, 崔 昆. 碳含量对基体钢组织和性能的影响[J]. 金属热处理, 1991, 16(8): 34-38. Hu Zhenhua, Li Lian, Cui Kun. The influence of carbon content on microstructure and properties of matrix steels[J]. Heat Treatment of Metals, 1991, 16(8): 34-38. [8] 邓锦强, 张覃轶, 陈 俊, 等. M390高铬高钒粉末冶金工具钢奥氏体化过程中的碳化物演变规律[J]. 金属热处理, 2023, 48(11): 1-7. Deng Jinqiang, Zhang Qinyi, Chen Jun, et al. Carbide evolution law of high chromium and high vanadium powder metallurgy tool steel M390 during austenitizing[J]. Heat Treatment of Metals, 2023, 48(11): 1-7. [9] Wenle L, Fujian G, Shenglong L, et al. Evolution of M7C3 carbides near the solidus and the influence of Mn element on the formation of M23C6 carbides in a high carbon martensitic stainless steel 90Cr18MoV[J]. Materials Characterization, 2023, 205: 113336. [10] Siqueira J S, Alves M R D A, Thaís Marcial Luiz, et al. Effect of heat treatment on the chromium-depleted zones of a high carbon martensitic stainless steel[J]. Materials and Corrosion, 2021, 72(11): 1752-1761. [11] Xu L, Wei S, Xiao F, et al. Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content[J]. Wear, 2017, 376-377: 968-974. [12] 陈 俊, 张覃轶, 邓锦强, 等. 马氏体不锈钢回火过程中碳化物的演变规律及其对耐蚀性的影响[J]. 金属热处理, 2023, 48(7): 38-43. Chen Jun, Zhang Qinyi, Deng Jinqiang, et al. Carbide evolution and its effect on corrosion resistance of matensiticstainless steel during tempering[J]. Heat Treatment of Metals, 2023, 48(7): 38-43. [13] Tsuchiyama T, tobata J, Tao T, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel[J]. Materials Science and Engineering A, 2012, 532: 585-592. [14] 黄晓琳, 贺跃辉, 张乾坤, 等. 热处理工艺对18%Cr马氏体不锈钢组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2017, 22(4): 503-509. Huang Xiaolin, He Yuehui, Zhang Qiankun, et al. Effect of heat treatment on the structure and mechanical properties of 18%Cr martensitic stainless steel[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(4): 503-509. [15] Xu H, Shen Y, Cao R, et al. Effect of different rolling passes on microstructure and mechanical properties of M390 powder metallurgy high-speed steel[J]. Journal of Materials Engineering and Performance, 2022, 31(12): 9650-9659. [16] Hecht M D, Picard Y N, Webler B A. Coarsening of inter- and intra-granular proeutectoid cementite in an initially pearlitic 2C-4Cr ultrahigh carbon steel[J]. Metallurgical and Materials Transactions A, 2017, 48(5): 2320-2335. [17] Li W, Xing H, Ping H, et al. Enhancing corrosion resistance of additive manufactured heterogeneous martensite stainless steel by hot isostatic pressing[J]. Materials Characterization, 2023, 203: 113137. [18] 车洪艳, 王铁军, 秦 巍, 等. 热等静压技术在金属材料加工领域的应用及发展趋势[J]. 粉末冶金工业, 2022, 32(4): 1-7. Che Hongyan, Wang Tiejun, Qin Wei. et al. The application and development trend of hot isostatic pressing in the field of metal material processing[J]. Powder Metallurgy Industry, 2022, 32(4): 1-7. [19] Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: An overview[J]. Metallurgical and Materials Transactions A, 2000, 31(12): 2981-3000. [20] Bocanegra-Bernal M H. Hot isostatic pressing (HIP) technology and its applications to metals and ceramics[J]. Journal of Materials Science, 2004, 39(21): 6399-6420. [21] Ceschini L, Morri A, Sambogna G. The effect of hot isostatic pressing on the fatigue behaviour of sand-cast A356-T6 and A204-T6 aluminum alloys[J]. Journal of Materials Processing Technology, 2008, 204(1): 231-238. [22] 厉鑫洋, 车洪艳, 林同伟, 等. 热处理对粉末冶金高速钢组织与性能的影响[J]. 金属热处理, 2016, 41(6): 147-150. Li Xinyang, Che Hongyan, Lin Tongwei, et al. Effect of heat treatment on microstructure and properties of powder metallurgy high speed steel[J]. Heat Treatment of Metals, 2016, 41(6): 147-150. [23] 杨 博. 粉末刀具钢制备及组织和性能研究[D]. 兰州: 兰州理工大学, 2020. [24] 韩凤麟, 马福康. 粉末冶金技术手册[M]. 北京: 机械工业出版社, 2009. [25] 于文涛, 李 晶, 史成斌, 等. 高碳马氏体不锈钢8Cr13MoV球化退火过程中碳化物的演变[J]. 金属热处理, 2016, 41(9): 25-31. Yu Wentao, Li Jing, Shi Chengbin, et al. Evolution of carbides in high carbon martensite stainless steel 8Cr13MoV during spheroidizing annealing process[J]. Heat Treatment of Metals, 2016, 41(9): 25-31. [26] 刘文彬, 乔龙阳, 潘新宇, 等. 淬火温度对刀剪用M390粉末冶金不锈钢组织和性能的影响[J]. 金属热处理, 2022, 47(4): 189-195. Liu Wenbin, Qiao Longyang, Pan Xinyu, et al. Effect of quenching temperature on microstructure and properties of M390 powder metallurgical stainless steel for chopping knives and scissors[J]. Heat Treatment of Metals, 2022, 47(4): 189-195. [27] 李 强, 郭 彪, 吴 辉, 等. 淬火温度对M4粉末高速钢组织和性能的影响[J]. 粉末冶金技术, 2020, 38(3): 183-191. Li Qiang, Guo Biao, Wu Hui, et al. Effects of quenching temperature on the microstructure and properties of M4 powder metallurgy high speed steel[J]. Powder Metallurgy Technology, 2020, 38(3): 183-191. [28] 曹 睿, 沈 漪, 周珍珍, 等. 不同冷却速度对M390粉末冶金高速钢组织与硬度的影响[J]. 材料热处理学报, 2022, 43(4): 116-123. Cao Rui, Shen Yi, Zhou Zhenzhen, et al. Effect of different cooling rates on microstructure and hardness of M390 powder metallurgy high-speed steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(4): 116-123. [29] 袁志钟, 陈 露, 张伯承, 等. 冷作模具钢DC53热处理增韧技术[J]. 金属热处理, 2023, 48(10): 15-22. Yuan Zhizhong, Chen Lu, Zhang Bocheng, et al. Heat treatment technologies for toughening of cold working die steel DC53[J]. Heat Treatment of Metals, 2023, 48(10): 15-22. [30] 袁志钟, 王梦飞, 张伯承, 等. 冷作模具钢SKD11的热处理增韧技术[J]. 金属热处理, 2023, 48(9): 1-7. Yuan Zhizhong, Wang Mengfei, Zhang Bocheng, et al. Heat treatment for toughening technology of cold working die steel SKD11[J]. Heat Treatment of Metals, 2023, 48(9): 1-7. |