[1] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56: 862-871. [2] Chen H, Zhou T, Wang X, et al. Correlation model between surface defects and fatigue behavior of 2024 aluminum alloy[J]. International Journal of Fatigue, 2022, 168: 107379. [3] Chen H, Liu Z, Wang X, et al. Effect of surface integrity on fatigue life of 2024 aluminum alloy subjected to turning[J]. Journal of Manufacturing Processes, 2022, 83: 650-666. [4] 何 杉, 杨 清, 闵祥禄. 喷丸强化对TC17钛合金疲劳性能的影响[J]. 金属热处理, 2018, 43(6): 159-161. He Shan, Yang Qing, Min Xianglu. Influence of shot peening on fatigue property of TC17 titanium alloy[J]. Heat Treatment of Metals, 2018, 43(6): 159-161. [5] 韩培培, 焦清洋, 权纯逸, 等. 激光冲击强化对7050铝合金小孔结构残余应力和疲劳性能的影响[J]. 金属热处理, 2021, 46(11): 202-206. Han Peipei, Jiao Qingyang, Quan Chunyi, et al. Effect of laser shock peening on residual stress and fatigue property of 7050 aluminium alloy with hole[J]. Heat Treatment of Metals, 2021, 46(11): 202-206. [6] 王富雪, 李家辉, 王 强, 等. 表面机械滚压处理对退火TWIP钢组织和力学性能的影响[J]. 金属热处理, 2024, 49(2): 274-280. Wang Fuxue, Li Jiahui, Wang Qiang, et al. Effect of surface mechanical rolling treatment on microstructure and mechanical properties of annealed TWIP steel[J]. Heat Treatment of Metals, 2024, 49(2): 274-280. [7] 蒋书祥, 郑建新. 二维超声滚压7050铝合金的微观组织与力学性能[J]. 金属热处理, 2018, 43(5): 116-119. Jiang Shuxiang, Zheng Jianxin. Microstructure and mechanical properties of 7050 aluminum alloy treated by two dimensional ultrasonic rolling[J]. Heat Treatment of Metals, 2018, 43(5): 116-119. [8] Liu Z, Zhang H, Yan Z, et al. Enhanced fatigue performance of aluminum alloy through surface strengthening treatment[J]. Materials Letters, 2022, 306: 130864. [9] Lei Y B, Wang Z B, Xu J L, et al. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure[J]. Acta Materialia, 2019, 168: 133-142. [10] 黄海威. 梯度纳米结构不锈钢材料的制备及疲劳机制研究[D]. 北京: 中国科学院大学, 2014. Huang Haiwei. Preparation and fatigue mechanism of gradient nano-structured (GNS) stainless steel[D]. Beijing: University of Chinese Academy of Sciences, 2014. [11] Dong P, Liu Z, Zhai X, et al. Incredible improvement in fatigue resistance of friction stir welded 7075-T651 aluminum alloy via surface mechanical rolling treatment[J]. International Journal of Fatigue, 2019, 124: 15-25. [12] 王 磊, 刘小鹏, 周 松, 等. 超声滚压对2024铝合金疲劳裂纹扩展行为的影响[J]. 吉林大学学报(工学版), 2024, 54(12): 3486-3495. Wang Lei, Liu Xiaopeng, Zhou Song, et al. Effect of ultrasonic rolling on fatigue crack propagation behavior of 2024 aluminum alloy[J/OL]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(12): 3486-3495. |