[1] Almangour B, Grzesiak D, Cheng J, et al. Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods[J]. Journal of Materials Processing Technology, 2018, 257: 288-301. [2] 陈 楠. 后续热处理对增材制造316L不锈钢力学性能及结构稳定性的影响[D]. 重庆: 重庆大学, 2019. [3] Zhu J H, Chesson D A, Yu Y T. Review—(Mn, Co)3O4-based spinels for SOFC interconnect coating application[J]. Journal of the Electrochemical Society, 2021, 168(11): 114519. [4] Zanchie E, Molin S, Sabato A G, et al. Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterization[J]. Journal of Power Source, 2020, 455: 227910. [5] 江 涛, 黄一丹. Ni-Si金属间化合物/陶瓷复合材料的制备技术及其研究发展现状和发展趋势[J]. 陶瓷, 2023(11): 50-54. Jiang Tao, Huang Yidan. Fabrication technology, research and development status and development trend of the Ni-Si intermetallics compounds/Ce-ramics matrix composites[J]. Ceramics, 2023(11): 50-54. [6] 潘超梅. 316L不锈钢粉末注射成形模拟及实验研究[D]. 昆明: 昆明理工大学, 2016. [7] 马建朝. ZTA颗粒增强高锰钢复合材料制备及其性能研究[D]. 西安: 西安理工大学, 2019. [8] 高继文, 高俊国, 南 健. 超音速火焰喷涂316L不锈钢涂层在零件尺寸修复中的应用[J]. 电镀与精饰, 2020, 42(2): 38-43. Gao Jiwen, Gao Junguo, Nan Jian. Application of HVOF 316L stainless steel coating in resizing of parts[J]. Plating and Finishing, 2020, 42(2): 38-43. [9] 金云学, 都春燕, 王 磊. 电弧喷涂316L不锈钢涂层的结构与性能[J]. 金属热处理, 2015, 40(1): 64-67. Jin Yunxue, Du Chunyan, Wang Lei. Microstructure and properties of arc sprayed 316L stainless steel coating[J]. Heat Treatment of Metals, 2015, 40(1): 64-67. [10] 何 炜, 王燕燕, 舒林森. 扫描速度对高速激光熔覆316L不锈钢涂层组织与性能的影响[J]. 金属热处理, 2023, 48(8): 248-253. He Wei, Wang Yanyan, Shu Linsen. Effect of scanning speed on microstructure and properties of 316L stainless steel coatings by high-speed laser cladding[J]. Heat Treatment of Metals, 2023, 48(8): 248-253. [11] Wu X K, Zhang J S, Zhou X L, et al. Advanced cold spray technology: Deposition characteristics and potential applications[J]. Science China Technological Sciences, 2012, 55(2): 357-368. [12] Yin S, Suo X, Liao H, et al. Significant influence of carrier gas temperature during the cold spray process[J]. Surface Engineering, 2014, 30(6): 443-450. [13] Suo X, Yin S, Planche M P, et al. Strong effect of carrier gas species on particle velocity during cold spray processes[J]. Surface and Coatings Technology, 2015, 268(25): 90-93. [14] 刘陈光, 漆 波. 冷气动力喷涂技术中颗粒的加速性能及沉积机理分析[D]. 衡阳: 南华大学, 2015. [15] Bray M, Cockburn A, O'Neill W. The laser-assisted cold spray process and deposit characterisation[J]. Surface and Coatings Technology, 2009, 203(19): 2851-2857. [16] Lupoi R, Sparkes M, Cockburn A, et al. High speed titanium coatings by supersonic laser deposition[J]. Materials Letters, 2011, 65(21/22): 3205-3207. [17] 李鹏辉. 超音速激光沉积WC/SS316L复合沉积层的研究[D]. 杭州: 浙江工业大学, 2017. |