[1] Zhang Y, Dang H, Quan S, et al. Model of fatigue crack propagation rate based on crack tip opening displacement as the driving parameter[J]. Modern Physics Letters B, 2022, 36(18): 2242043. [2] Zhang M, Li L, Wang D, et al. Fatigue failure mechanism analysis of 1Cr17Ni2 stainless steel blades ground by an abrasive belt[J]. Frontiers in Materials, 2023, 10: 1166836. [3] 王志武, 宋 涛. 高温服役3×105 h后汽缸螺栓用20Cr1Mo1V1钢的应力松弛性能[J]. 机械工程材料, 2013, 37(2): 74-77. Wang Zhiwu, Song Tao. Stress relaxation of 20Cr1Mo1V1 steel for cylinder bolt after working for 3×105 h at high temperature[J]. Materials for Mechanical Engineering, 2013, 37(2): 74-77. [4] 彭谦之, 左华付, 李建军, 等. 回火工艺对1Cr17Ni2不锈钢锻后回火硬度的影响[J]. 金属热处理, 2020, 45(1): 112-116. Peng Qianzhi, Zuo Huafu, Li Jianjun, et al. Effect of tempering on hardness of forged 1Cr17Ni2 stainless steel[J]. Heat Treatment of Metals, 2020, 45(1): 112-116. [5] 徐桂芳, 刘文通, 张伯承, 等. 热处理工艺对大尺寸1Cr17Ni2钢组织与性能的影响[J]. 金属热处理, 2023, 48(12): 7-12. Xu Guifang, Liu Wentong, Zhang Bocheng, et al. Effect of heat treatment process on microstructure and mechanical properties of large size 1Cr17Ni2 steel[J]. Heat Treatment of Metals, 2023, 48(12): 7-12. [6] 贾元伟. 退火工艺对热轧态含氮马氏体不锈钢420U6显微组织和硬度的影响[J]. 金属热处理, 2024, 49(3): 98-102. Jia Yuanwei. Effect of annealing process on microstructure and hardness of hot-rolled 420U6 nitrogen-containing martensitic stainless steel[J]. Heat Treatment of Metals, 2024, 49(3): 98-102. [7] 杨永红. 1Cr17Ni2钢热处理性能影响因素研究[J]. 金属制品, 2016, 42(4): 22-25. Yang Yonghong. Influence factor research of 1Cr17Ni2 steel heat treatment property[J]. Metal Products, 2016, 42(4): 22-25. [8] Zheng Y, Li N, Yan J, et al. The microstructure and mechanical properties of 1Cr17Ni2/QAl7 brazed joints using Cu-Mn-Ni-Ag brazing alloy[J]. Materials Science and Engineering A, 2016, 661: 25-31. [9] 黄 蓓, 郭占兵, 帅林涛, 等. 1Cr17Ni2铁素体含量的控制及其对性能的影响[J]. 失效分析与预防, 2021, 16(6): 398-401, 407. Huang Bei, Guo Zhanbing, Shuai Lintao, et al. Control of ferrite content in 1Cr17Ni2 and its effect on mechanical properties[J]. Failure Analysis and Prevention, 2021, 16(6): 398-401, 407. [10] Yang X, Zhang L, Zhang S, et al. Atmospheric corrosion behaviour and degradation of high-strength bolt in marine and industrial atmosphere environments[J]. International Journal of Electrochemical Science, 2021, 16(1): 151015. [11] Hu C Y, Liu X L, Tao C H, et al. Failure analysis of stainless steel bolt[C]//2015 International Conference on Material Science and Applications. 2015: 932-936. [12] 楚宝帅, 陈建礼, 李振江, 等. 碳氮含量对4Cr16NiMo钢淬火温度及耐蚀性能的影响[J]. 金属热处理, 2022, 47(12): 152-157. Chu Baoshuai, Chen Jianli, Li Zhenjiang, et al. Effect of carbon and nitrogen content on quenching temperature and corrosion resistance of 4Crl6NiMo steel[J]. Heat Treatment of Metals, 2022, 47(12): 152-157. [13] 夏书敏, 刘超英, 张贞明. 淬火与回火间的时效对1Cr17Ni2钢组织及屈服强度的影响[J]. 金属热处理, 2002, 27(7): 24-26. Xia Shumin, Liu Chaoying, Zhang Zhenming. Effect of aging treatment between quenching and tempering on microstructure and yield strength of lCrl7Ni2 steel[J]. Heat Treatment of Metals, 2002, 27(7): 24-26. [14] 蒋中华, 杜军毅, 王 培, 等. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902. Jiang Zhonghua, Du Junyi, Wang Pei, et al. Mechanism of improving the impact toughness of SA508-3 steel used for nuclear power by pre-transformation of M-A islands[J]. Acta Metallurgica Sinica, 2021, 57(7): 891-902. [15] Zhang S, Wang P, Li D, et al. Investigation of the evolution of retained austenite in Fe-13%Cr-4%Ni martensitic stainless steel during intercritical tempering[J]. Materials and Design, 2015, 84: 385-394. [16] 郝宪朝, 高 明, 张 龙, 等. 退火态12Cr13不锈钢显微组织及其对冲击韧性的影响[J]. 金属学报, 2011, 47(7): 912-916. Hao Xianchao, Gao Ming, Zhang Long, et al. Microstructure of annealed 12Cr13 stainless steel and its effect on the impact toughness[J]. Acta Metallurgica Sinica, 2011, 47(7): 912-916. |