[1] 贺信莱, 尚成嘉, 杨善武. 高性能低碳贝氏体钢 ——成分、 工艺、 组织、 性能与应用[M]. 北京: 冶金工业出版社, 2008. [2] 薛小怀, 钱百年, 于少飞, 等. 超低碳贝氏体(ULCB)钢研究进展及应用[J]. 材料导报, 2001(10): 12-14. Xue Xiaohuai, Qian Baifei, Yu Shaofei, et al. Applications and research progress in ultra low carbon bainitic (ULCB) steel[J]. Materials Reports, 2001(10): 12-14. [3] Krishnadev M R, Sojka G J, Banerji S K. Strong tough HSLA steels via processing and heat treating of Cu-Ni-Cb and Cu-Ti-B compositions[J]. Journal of Engineering Materials and Technology, 1981, 103(3): 207. [4] Vassilaros M G, Czyryca E J. The development of high-strength, cooling-rate insensitive ultra-low-carbon steel weld metals[J]. Key Engineering Materials, 1993, 84-85: 587-601. [5] 张朝生. 焊接性能良好的超低碳贝氏体型非调质HT780钢的开发[J]. 上海金属, 2004(4): 60-60. [6] 姚连登, 王培玉. 70 kg级超低碳贝氏体钢WH70的研制[J]. 宽厚板, 2002, 8(2): 6-11. Yao Liandeng, Wang Peiyu. Research and development of 70 kg class ultra-low carbon bainite steel WH70[J]. Wide and Heavy Plate, 2002, 8(2): 6-11. [7] 赵路遇. 超低碳贝氏体钢及其在舰船上的应用[J]. 材料开发与应用, 2006(2): 34-37. Zhao Luyu. Ultra-low carbon bainite steel and its application in naval-ship[J]. Development and Application of Materials, 2006(2): 34-37. [8] 彭 云, 宋 亮, 赵 琳, 等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618. Peng Yun, Song Liang, Zhao Lin, et al. Research status of weldability of advanced steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 601-618. [9] 孙婷婷, 陈伟丽, 贾子龙. 等温温度对超低碳贝氏体钢组织和硬度的影响[J]. 金属热处理, 2023, 48(8): 94-98. Sun Tingting, Chen Weili, Jia Zilong, et al. Effect of isothermal temperature on microstructure and hardness of ultra-low carbon bainitic steel[J]. Heat Treatment of Metals, 2023, 48(8): 94-98. [10] Balaguer J P. The weldability of molybdenum containing ultralow carbon bainitic steels[D]. New York: Rensselaer Polytechnic Institute, 1988. [11] 小指军夫. 控制轧制控制冷却-改善材质的轧制技术发展[M]. 李伏桃, 译. 北京: 冶金工业出版社, 2002. [12] 王思成, 周 丹, 柴希阳, 等. 控轧控冷工艺对440 MPa级船体钢组织与性能的影响[J]. 金属热处理, 2021, 46(4): 138-142. Wang Sicheng, Zhou Dan, Chai Xiyang, et al. Effect of controlled cooling process on microstructure and properties of 440 MPa grade hull steel[J]. Heat Treatment of Metals, 2021, 46(4): 138-142. [13] 翁宇庆. 超细晶钢: 钢的组织细化理论与控制技术[M]. 北京: 冶金工业出版社, 2003. [14] 尚成嘉, 杨善武, 王学敏, 等. RPC对800MPa级低合金高强度钢的影响[J]. 北京科技大学学报, 2002, 24(2): 129-132. Shang Chengjia, Yang Shanwu, Wang Xuemin, et al. Influence of RPC technique on the microstructure and mechanical properties of 800 MPa grade HSLA plate steel[J]. Journal of University of Science and Technology Beijing, 2002, 24(2): 129-132. [15] Ghosh A, Das S, Chatterjee S, et al. Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra low carbon Cu bearing HSLA forging[J]. Materials Science and Engineering A, 2003, 348(1/2): 299-308. |