[1] 高 芸, 王 蓓, 胡迤丹, 等. 2024年中国天然气发展述评及2025年展望[J]. 国际石油经济, 2025, 33(2): 55-67. Gao Yun, Wang Bei, Hu Yidan, et al. Review of China's natural gas development in 2024 and outlook for 2025[J]. International Petroleum Economics, 2025, 33(2): 55-67. [2] 赵金洲, 任 岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8): 121-142. Zhao Jinzhou, Ren Lan, Jiang Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142. [3] 刘统亮, 施建国, 冯 定, 等. 水平井可溶桥塞分段压裂技术与发展趋势[J]. 石油机械, 2020, 48(10): 103-110. Liu Tongliang, Shi Jiangguo, Feng Ding, et al. Technical status and development trend of staged fracturing with dissoluble bridge plug in horizontal well[J]. China Petroleum Machinery, 2020, 48(10): 103-110. [4] 卢 刚. 页岩气水平井分段压裂作业中全可溶桥塞的应用[J]. 油气井测试, 2022, 31(5): 38-42. Lu Gang. Application of fully soluble bridge plug in staged fracturing of shale gas horizontal well[J]. Well Testing, 2022, 31(5): 38-42. [5] 刘 奔. 桥塞技术的发展历程及现状分析[J]. 石油矿场机械, 2021, 50(4): 81-87. Liu Ben. The development and current situation of bridge plug technology[J]. Oil Field Equipment, 2021, 50(4): 81-87. [6] Sun J, Du W, Fu J, et al. A review on magnesium alloys for application of degradable fracturing tools[J]. Journal of Magnesium and Alloys, 2022, 10(10): 2649-2672. [7] 刘宝胜, 董舸航, 张跃忠, 等. 压裂暂堵工具用可溶镁合金的研究进展[J]. 中国有色金属学报, 2022, 32(12): 3609-3631. Liu Baosheng, Dong Gehang, Zhang Yuezhong, et al. Research progress of soluble magnesium alloy for fracturing temporary plugging tools[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3609-3631. [8] Hou J, Li D, Liu Z, et al. Structure-function integrated magnesium alloys and their composites[J]. Journal of Magnesium and Alloys, 2023, 11(10): 3511-3544. [9] Wang J, Li H, Wang J, et al. Microstructure and properties of novel Mg-Al-Zn-Mn-Ca-Ni dissoluble alloy fabricated by industrial two-step extrusion method[J]. Metals, 2022, 12(4): 583. [10] Chen L, Wu Z, Xiao D H, et al. Effects of copper on the microstructure and properties of Mg-17Al-3Zn alloys[J]. Materials and Corrosion, 2015, 66(10): 1159-1168. [11] Tan W, Li T, Li S, et al. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls[J]. Journal of Materials Science and Technology, 2021, 94: 22-31. [12] Wang X W, Wang W, Chen W, et al. Effects of indium on corrosion behavior of Mg-Al-Cu alloy[J]. Materials Characterization, 2021, 177: 111157. [13] Wang M F, Xiao D H, Zhou P F, et al. Effects of rare earth yttrium on microstructure and properties of MgAlZn alloy[J]. Journal of Alloys and Compounds, 2018, 742: 232-239. [14] Wang M, Xiao D H, Liu W S. Effect of Si addition on microstructure and properties of magnesium alloys with high Al and Zn contents[J]. Vacuum, 2017, 141: 144-151. [15] Geng Z, Xiao D, Chen L. Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys[J]. Journal of Alloys and Compounds, 2016, 686: 145-152. [16] Li J, Zhang B, Wei Q, et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.%NaCl solution[J]. Electrochimica Acta, 2017, 238: 156-167. [17] Turen Y U, Zengin H, Sun Y, et al. Effects of 1wt.%Ti, In, and Sn additions on the microstructure, mechanical and corrosion properties of the as-cast and hot-rolled AM60 magnesium alloys[J]. Metal Science and Heat Treatment, 2019, 61(5/6): 318-324. [18] 吴 洋, 钱亚锋, 赵言辉. Al含量及时效时间对Mg-Al系镁合金力学性能和阻尼能力的影响[J]. 金属热处理, 2023, 48(8): 30-35. Wu Yang, Qian Yafeng, Zhao Yanhui. Effects of Al content and aging time on mechanical properties and damping capacity of Mg-Al magnesium alloys[J]. Heat Treatment of Metals, 2023, 48(8): 30-35. [19] 郭鹏杰, 张 星, 李保成, 等. AZ80镁合金第二相体积分数对其拉伸性能的影响[J]. 金属热处理, 2019, 44(3): 46-49. Guo Pengjie, Zhang Xing, Li Baocheng, et al. Effect of secondary phase volume fraction on tensile properties of AZ80 magnesium alloys[J]. Heat Treatment of Metals, 2019, 44(3): 46-49. |