[1] Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge: Cambirdge University Press, 2006. [2] 李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术[M]. 北京: 国防工业出版社, 2012. [3] Long H B, Mao S C, Liu Y N, et al. Microstructural and compositional design of Ni-based single crystalline superalloys: A review[J]. Journal of Alloys and Compounds, 2018, 743: 203-220. [4] 邢鹏宇. Ta含量对FGH4098合金组织和性能的影响[D]. 北京: 钢铁研究总院, 2017. [5] Shi Z X, Liu S Z, Yue X D, et al. Effect of Nb content on microstructure stability and stress rupture properties of single crystal superalloy containing Re and Ru[J]. Journal of Central South University, 2016, 23(6): 1293-1300. [6] Xu Y L, Yang C X, Xiao X S, et al. Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A[J]. Materials Science and Engineering A, 2011, 530: 315-326. [7] Xu Y L, Zhang L, Li J, et al. Relationship between Ti/Al ratio and stress-rupture properties in nickel-based superalloy[J]. Materials Science and Engineering A, 2012, 544: 48-53. [8] Zhang J, Li J G, Jin T, et al. Effect of Mo concentration on creep properties of a single crystal nickel-base superalloy[J]. Materials Science and Engineering A, 2010, 527: 3051-3056. [9] Tian S G, Wang M G, Li T, et al. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys[J]. Materials Science and Engineering A, 2010, 527: 5444-5451. [10] 孙跃军, 张 军. Ta对一种镍基单晶合金微观组织及蠕变机制的影响[J]. 稀有金属材料与工程, 2012, 41(9): 1615-1618. Sun Yuejun, Zhang Jun. Effects of Ta on microstructure and creep mechanism of a Ni-base single crystal superalloy[J]. Rare Metal Materials and Engineering, 2012, 41(9): 1615-1618. [11] 张 宇. 镍基高温合金“团簇加连接原子”成分式[D]. 大连: 大连理工大学, 2018. [12] 陈金宾. 新型长寿命第二代镍基单晶高温合金成分设计与组织性能研究[D]. 北京: 北京科技大学, 2022. [13] 宋晓芳. 微量元素对镍基高温合金间隙相的影响[D]. 镇江: 江苏科技大学, 2018. [14] Geng Yongxiang, Zheng Haizhong, Li Guifa, et al. Electrochemical corrosion behavior of Ni-based single-crystal superalloy treated by laser shock peening[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2721-2731. [15] 刘浩典. 热处理对含W镍基高温合金显微组织与力学性能的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.[16] 林垣成. 镍基高温合金电子结构性质与力学行为的第一原理研究[D]. 北京: 清华大学, 2021. [17] 任维新, 刘 彬, 张礼峰, 等. 镍基高温合金中γ/γ′两相晶格错配度的研究进展[J]. 上海金属, 2015, 37(2): 40-44. Ren Weixin, Liu Bin, Zhang Lifeng, et al. Research progress on the lattice misfit between theγ and γ′ phases in the nickel-based superalloy[J]. Shanghai Metals, 2015, 37(2): 40-44. [18] 王安东, 马亚硕, 施轶超, 等. 热处理对低Re镍基单晶高温合金组织的影响[J]. 热加工工艺, 2020, 49(12): 113-118. Wang Andong, Ma Yashuo, Shi Yichao, et al. Effect of heat treatment on microstructure of low Re nickle based single crystal superalloy[J]. Hot Working Technology, 2020, 49(12): 113-118. [19] Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ′ alloys[J]. Acta Materialia, 2012, 60(4): 1771-1783. [20] 陈晶阳, 赵 宾, 冯 强, 等. Ru和Cr对镍基单晶高温合金γ/γ′热处理组织演变的影响[J]. 金属学报, 2010, 46(8): 897-906. Chen Jingyang, Zhao Bin, Feng Qiang, et al. Effects of Ru and Cr on γ/γ′ microstructural evolution of Ni-based single crystal superalloys during heat treatment[J]. Acta Metallurgica Sinica, 2010, 46(8): 897-906. [21] 葛志成. Ta和Ru对镍基单晶高温合金组织和性能的影响[D]. 合肥: 中国科学技术大学, 2022. [22] 王云江. 镍基合金力学性能与元素分配行为的第一原理研究[D]. 北京: 清华大学, 2010. [23] Choi B G, Kim I S, Hong H U, et al. Effect of Ti content on creep properties of Ni-base single crystal superalloys[J]. Metals and Materials International, 2017, 23(5): 877-883. |