[1] 冯 培, 陈文革, 闫芳龙, 等. 高强高导Cu-Cr-Zr系合金的研究进展[J]. 电工材料, 2019(2): 11-17. Feng Pei, Chen Wenge, Yan Fanglong, et al. Research progress of Cu-Cr-Zr copper alloys with high strength and high conductivity[J]. Electrical Engineering Materials, 2019(2): 11-17. [2] 邵 茜, 李 伟, 苏 谋, 等. 高铬锆铜弹簧触指丝材的制备工艺及性能[J]. 特种铸造及有色合金, 2019, 39(9): 1037-1040. Shao Qian, Li Wei, Su Mou, et al. Preparation process and performance of high chromium Cu-Cr-Zr spring contact wire[J]. Special Casting and Nonferrous Alloys, 2019, 39(9): 1037-1040. [3] 黄实哈, 谢伟滨, 黄 伟, 等. 形变热处理对Cu-0.8Cr-0.1Zr合金微观组织及性能的影响[J]. 稀有金属, 2021, 45(11): 1299-1308. Huang Shiha, Xie Weibin, Huang Wei, et al. Mechanical properties and microstructure evolution in Cu-0.8Cr-0.1Zr alloy with thermomechanical treatment[J]. Chinese Journal of Rare Metals, 2021, 45(11): 1299-1308. [4] 钟海燕, 袁孚胜. 高强高导铜铬锆合金的市场现状分析[J]. 有色冶金设计与研究, 2019, 40(1): 28-30. Zhong Haiyan, Yuan Fusheng. Analysis on market status of copper-chromium-zirconium alloy with high-strength and high-conductivity[J]. Nonferrous Metals Engineering and Research, 2019, 40(1): 28-30. [5] 贾 飞, 赵 丹, 田希晨, 等. 固溶温度对双辊铸轧Cu-3.2Ni-0.75Si合金组织与性能的影响[J]. 特种铸造及有色合金, 2022, 42(4): 500-504. Jia Fei, Zhao Dan, Tian Xichen, et al. Effects of solution temperature on microstructure and properties of Cu-3.2Ni-0.7Si alloy by twin-roll strip casting[J]. Special Casting and Nonferrous Alloys, 2022, 42(4): 500-504. [6] 刘淑云. 铜及铜合金热处理[M]. 北京: 机械工业出版社, 1990. [7] Jha K, Neogy S, Kumar S, et al. Correlation between microstructure and mechanical properties in the age-hardenable Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 2021, 546: 152775. [8] Shen Z, Lin Z, Shi P, et al. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment[J]. Journal of Materials Science & Technology, 2022, 110: 187-197. [9] Li J, Ding H, Li B, et al. Microstructure evolution and properties of a Cu-Cr-Zr alloy with high strength and high conductivity[J]. Materials Science and Engineering A, 2021, 819: 141464. [10] Li J, Ding H, Li B. Study on the variation of properties of Cu-Cr-Zr alloy by different rolling and aging sequence[J]. Materials Science and Engineering A, 2021, 802: 140413. [11] Du Y, Zhou Y, Song K, et al. Zr-containing precipitate evolution and its effect on the mechanical properties of Cu-Cr-Zr alloys[J]. Journal of Materials Research and Technology, 2021, 14: 1451-1458. [12] 梁 博, 王庆娟, 周 晓, 等. 时效对ECAP变形Cu-Cr-Zr合金组织与性能的影响[J]. 金属热处理, 2017, 42(7): 43-45. Liang Bo, Wang Qingjuan, Zhou Xiao, et al. Effect of aging on microstructure and properties of ECAPed Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2017, 42(7): 43-45. [13] 耿永锋, 张 毅, 田保红, 等. 形变热处理对Cu-0.80Cr-0.30Zr-0.03P合金时效性能的影响[J]. 材料热处理学报, 2019, 40 (8): 69-75. Geng Yongfeng, Zhang Yi, Tian Baohong, et al. Effects of thermo-mechanical treatment on aging properties of Cu-0.80Cr-0.30Zr-0.03P alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 69-75. [14] 陈 莹, 党淑娥, 马玉霞, 等. Cu-Cr-Zr合金高温热变形行为[J]. 锻压技术, 2020, 45(2): 198-202. Chen Ying, Dang Shue, Ma Yuxia, et al. High temperature thermal deformation behavior of Cu-Cr-Zr alloy[J]. Forging and Stamping Technology, 2020, 45(2): 198-202. [15] 蔡 薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-154. Cai Wei, Gao Pengzhe, Chen Huiming, et al. High temperature deformation behavior and hot processing map of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2019, 44(8): 147-154. [16] 刘劲松, 徐亚楠, 邓偲瀛, 等. Cu-0.96Cr-0.078Zr(-0.07La)合金的高温热变形行为[J]. 中国有色金属学报, 2025, 35(2): 538-556. Liu Jinsong, Xu Yanan, Deng Siying, et al. Hot deformation behavior of Cu-0.96Cr-0.078Zr(-0.07La) alloy[J]. The Chinese Journal of Nonferrous Metals, 2025, 35(2): 538-556. [17] 刘 轶, 韩 涛, 刘艳洁, 等. 高强高导Cu-Cr-Zr合金的微观组织和性能的关系 [J/OL]. 特种铸造及有色合金, 2025. DOI: 10.15980/j.tzzz.Y20240021. Liu Yi, Han Tao, Liu Yanjie, et al. Relationship between microstructure and mechanical or electrical properties of high-strength and high-conductivity Cu-Cr-Zr alloy[J]. Special Casting & Nonferrous Alloys, 2025. DOI: 10.15980/j.tzzz.Y20240021. [18] 岳丽娟, 王艳婷, 赵红运, 等. QBe2铍青铜合金固溶工艺与组织性能研究[J]. 中国材料进展, 2022, 41(3): 237-240. Yue Lijuan, Wang Yanting, Zhao Hongyun, et al. Study on solid solution technology and microstructure of QBe2 beryllium bronze alloy[J]. Materials China, 2022, 41(3): 237-240. [19] 黄旭刚, 李海龙, 张健康, 等. 固溶温度对铍青铜QBe2带材组织与性能的影响[J]. 特种铸造及有色合金, 2023, 43(12): 1669-1673. Huang Xugang, Li Hailong, Zhang Jiankang, et al. Effects of solution temperature on microstructure and properties of QBe2 beryllium bronze strip[J]. Special Casting and Nonferrous Alloys, 2023, 43(12): 1669-1673. [20] 叶 青, 冯兴宇, 赵鸿金. 固溶时间对Cu-Ni-Si-Mg合金组织性能的影响[J]. 有色金属科学与工程, 2017, 8(3): 79-83. Ye Qing, Feng Xingyu, Zhao Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. [21] 叶权华, 刘 平, 刘 勇, 等. 固溶温度对Cu-Cr-Zr-RE合金性能和组织的影响[J]. 金属热处理, 2005, 30(S1): 218-220. Ye Quanhua, Liu Ping, Liu Yong, et al. Effect of solution temperature on properties and microstructure of Cu-Cr-Zr-RE alloy[J]. Heat Treatment of Metals, 2005, 30(S1): 218-220. [22] 马玉霞, 党淑娥, 陈慧琴. 固溶处理对Cu-Cr-Zr合金组织与性能的影响[J]. 金属热处理, 2022, 47(1): 163-166. Ma Yuxia, Dang Shue, Chen Huiqin. Effect of solution treatment on microstructure and properties of Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2022, 47(1): 163-166. [23] 路俊攀, 李湘海. 加工铜及铜合金金相图谱[M]. 长沙: 中南大学出版社, 2010. Lu Junpan, Li Xianghai. Metallographic Atlas of Processed Copper and Copper Alloys[M]. Changsha: Central South University Press, 2010. [24] 李炯辉. 金属材料金相图谱[M]. 北京: 机械工业出版社, 2006. Li Jionghui. Metallographic Atlas of Metal Materials[M]. Beijing: China Machine Press, 2006. [25] 雷 超. 铜晶界中合金元素偏析倾向及其对晶界性能影响的第一性原理研究[D]. 兰州: 兰州理工大学, 2021. Lei Chao. First-principles study on segregation tendency of alloying elements in copper grain boundaries and its effect on grain boundary properties[D]. Lanzhou: Lanzhou University of Technology, 2021. [26] 张志远. 时效强化纳米孪晶铜铬锆合金微观结构和性能研究[D]. 合肥: 中国科学技术大学, 2020. Zhang Zhiyuan. Research on microstructure and properties of age-hardened nano-twinned copper-chromium-zirconium alloy[D]. Hefei: University of Science and Technology of China, 2020. [27] 陈景榕, 李承基. 金属与合金中的固态相变[M]. 北京: 冶金工业出版社, 1997. Chen Jingrong, Li Chengji. Solid-State Phase Transformations in Metals and Alloys[M]. Beijing: Metallurgical Industry Press, 1997. [28] 刘国辉, 赵四祥, 彭凌剑, 等. Cu-Cr-Zr合金中沉淀相的控制[J]. 金属热处理, 2015, 40(4): 1-6. Liu Guohui, Zhao Sixiang, Peng Lingjian, et al. Control of precipitates in CuCrZr alloy[J]. Heat Treatment of Metals, 2015, 40(4): 1-6. [29] 花思明, 张平则, 刘子利. CuCr1合金接触线的时效工艺及组织性能[J]. 金属热处理, 2021, 46(5): 143-149. Hua Siming, Zhang Pingze, Liu Zili. Aging process, microstructure and properties of CuCr1 alloy contact wire[J]. Heat Treatment of Metals, 2021, 46(5): 143-149. [30] 田 莳. 材料物理性能[M]. 北京: 北京航空大学出版社, 2001. Tian Shi. Physical Properties of Materials[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2001. [31] 王 润. 金属材料物理性能[M]. 北京: 冶金工业出版社, 1992. Wang Run. Physical Properties of Metallic Materials[M]. Beijing: Metallurgical Industry Press, 1992. |