[1] Zhang Q, Tang R, Yin K, et al. Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corrosion Science, 2009, 51(9): 2092-2097. [2] Zhu Z, Zhang L, Wu Q, et al. An experimental investigation of thermal contact conductance of Hastelloy C-276 based on steady-state heat flux method[J]. International Communications in Heat and Mass Transfer, 2013, 41: 63-67. [3] Bagchi A, Saravanan S, Shanthos Kumar G, et al. Numerical simulation and optimization in pulsed Nd ∶YAG laser welding of Hastelloy C-276 through Taguchi method and artificial neural network[J]. Optik, 2017, 146: 80-89. [4] 许 媛, 吴冬冬, 马广义. Hastelloy C-276薄板脉冲激光填丝焊接成形工艺[J]. 激光与光电子学进展, 2017, 54(11): 215-219. Xu Yuan, Wu Dongdong, Ma Guangyi. Forming process of pulsed laser welding with filler wire for Hastelloy C-276 sheets[J]. Laser and Optoelectronics Progress, 2017, 54(11): 215-219. [5] 万自永, 闫飞昊, 张云浩, 等. 不同加热制度对哈氏合金C276耐晶间腐蚀性能影响[J]. 材料开发与应用, 2015, 30(5): 49-51. Wan Ziyong, Yan Feihao, Zhang Yunhao, et al. Effect of different heating regime on properties of intercrystalline corrosion tolerance for Hastelloy C276[J]. Development and Application of Materials, 2015, 30(5): 49-51. [6] 毛雪平, 王 岗, 张立殷, 等. 镍基合金C276高温拉伸力学性能的试验分析[J]. 动力工程, 2009, 29(7): 699-702. Mao Xueping, Wang Gang, Zhang Liyin, et al. High temperature tensile properties of nickel based alloy C276[J]. Journal of Chinese Society of Power Engineering, 2009, 29(7): 699-702. [7] Ji J, Jia Z, Yang P, et al. Effect of post-deformation heat treatment on the microstructure and properties of Inconel 617 alloy[J]. Transactions of the Indian Institute of Metals, 2024, 77(9): 2479-2487. [8] 丰 涵, 宋志刚, 郑文杰, 等. 固溶处理对Inconel 690合金组织和力学性能的影响[J]. 钢铁研究学报, 2009, 21(3): 46-50. Feng Han, Song Zhigang, Zheng Wenjie, et al. Effect of solution treatment on microstructure and mechanical property of Inconel 690[J]. Journal of Iron and Steel Research, 2009, 21(3): 46-50. [9] Davis J R. Nickel, Cobalt, and Their Alloys[M]. Ohio: ASM International, 2000. [10] 王吉良, 朱定一, 轩建伟, 等. 先进高强度冷轧TWIP钢的组织和力学性能[J]. 金属热处理, 2015, 40(6): 21-26. Wang Jiliang, Zhu Dingyi, Xuan Jianwei, et al. Microstructure and mechanical properties of advanced high strength cold-rolled TWlP steel[J]. Heat Treatment of Metals, 2015, 40(6): 21-26. [11] 王 涛, 丁雨田, 王兴茂, 等. 镍基高温合金在变形热处理过程中的组织和织构演变[J]. 稀有金属材料与工程, 2023, 52(5): 1555-1564. Wang Tao, Ding Yutian, Wang Xingmao, et al. Microstructure and texture evolution of Ni-based superalloy during deformation and thermomechanical treatments[J]. Rare Metal Materials and Engineering, 2023, 52(5): 1555-1564. [12] Wang K, Tao N R, Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper[J]. Acta Materialia, 2006, 54(19): 5281-5291. [13] Tao R N, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50(18): 4603-4616. [14] Yanushkevich Z, Belyakov A, Haase C, et al. Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling[J]. Materials Science and Engineering A, 2016, 651: 763-773. [15] Kusakin P, Belyakov A, Haase C, et al. Microstructure evolution and strengthening mechanisms of Fe-23Mn-0.3C-1.5Al TWIP steel during cold rolling[J]. Materials Science and Engineering A, 2014, 617: 52-60. [16] 孙衍乐. 大变形轧制纳米晶镍基合金组织及力学性能研究[D]. 上海: 上海交通大学, 2018. [17] Winther G, Jensen D J, Hansen N. Dense dislocation walls and microbands aligned with slip planes—Theoretical considerations[J]. Acta Materialia, 1997, 45(12): 5059-5068. [18] 彭梦都, 时 捷, 崔 冰, 等. 高氮奥氏体钢的条件拉伸行为[J]. 金属热处理, 2018, 43(12): 37-41. Peng Mengdu, Shi Jie, Cui Bing, et al. Conditioned tensile behavior of high nitrogen austenitic steel[J]. Heat Treatment of Metals, 2018, 43(12): 37-41. [19] 冯 策, 李德富, 郭胜利, 等. 拉伸变形对Hastelloy C-276合金组织与力学性能的影响[J]. 稀有金属材料与工程, 2016, 45(12): 3128-3134. Feng Ce, Li Defu, Guo Shengli, et al. Effects of tensile deformation on microstructure and mechanical properties of Hastelloy C-276 alloy[J]. Rare Metal Materials and Engineering, 2016, 45(12): 3128-3134. [20] 张宇飞, 刘海涛, 郑淮北. 冷轧压下率对高氮奥氏体不锈钢组织性能的影响[J]. 轧钢, 2022, 39(6): 159-164, 182.Zhang Yufei, Liu Haitao, Zheng Huaibei. Effect of cold rolling reduction rate on microstructure and property of high nitrogen austenitic stainless steel[J]. Steel Rolling, 2022, 39(6): 159-164, 182. [21] Sidor J J, Kestens L A I. Analytical description of rolling textures in face-centred-cubic metals[J]. Scripta Materialia, 2013, 68(5): 273-276. [22] Hirsch J, Lücke K, Hatherly M. Overview No.76: Mechanism of deformation and development of rolling textures in polycrystalline f. c. c. metals—III. The influence of slip inhomogeneities and twinning[J]. Acta Metallurgica, 1988, 36(11): 2905-2927. [23] Murayama M, Belyakov A, Hara T, et al. Development of a high-strength high-conductivity Cu-Ni-P alloy. Part I: Characterization of precipitation products[J]. Journal of Electronic Materials, 2006, 35(10): 1787-1792. |